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• We propose ECISER, a method for
clip-art image segmentation.

• It achieves dramatic computational
speedups over the state-of-the-art
approaches.

• It preserves almost the same quality
of results.

• The basic idea is to connect image
segmentation with aliased rasteriza-
tion.

• We also present a clip-art image
segmentation database with ground
truth labeling.
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a b s t r a c t

Clip-art image segmentation is widely used as an essential step to solve many vision problems such
as colorization and vectorization. Many of these applications not only demand accurate segmentation
results, but also have little tolerance for time cost, which leads to the main challenge of this kind of
segmentation. However, most existing segmentation techniques are found not sufficient for this purpose
due to either their high computation cost or low accuracy. To address such issues, we propose a novel
segmentation approach, ECISER, which is well-suited in this context. The basic idea of ECISER is to take
advantage of the particular nature of cartoon images and connect image segmentation with aliased
rasterization. Based on such relationship, a clip-art image can be quickly segmented into regions by re-
rasterization of the original image and several other computationally efficient techniques developed in
this paper. Experimental results show that our method achieves dramatic computational speedups over
the current state-of-the-art approaches, while preserving almost the same quality of results.
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1. Introduction

Image segmentation is the process of partitioning an image into
a set of non-overlapped regions. In the present work, we consider
the case where the image to be segmented is a clip-art image. Such
an image is typically piece-wise smooth, and consists of a few color
regions without fine textures (see Fig. 1(d)). Moreover, a clip-art
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Fig. 1. Color statistics of natural image and clip-art image. (a) A natural image. (b) RGB distribution of colors in the natural image. (c) RB histogram (RGB histograms projected
upon the RB axis) of the natural image. (d) A clip-art image. (e) RGB distribution of colors in the clip-art image. (f) RB histogram of the clip-art image. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

image is often generated by an anti-aliased rasterization process.
As a result, the color of the edge pixels could be blended by the col-
ors of two or three pixels nearby. These are specific characteristics
of clip-art images, which could be important cues for segmenta-
tion.

Segmenting clip-art images often serves as an important step
in many applications. From the segmentation map, it is possible
to identify regions of interest and objects in the scene, which is
beneficial to subsequent clip-art image processing such as vector-
ization [1,2], colorization [3,4], cartoon character retrieval [5,6],
computer-assisted painting of cels [7,8], and cartoon animation
compression [9,10]. Notably a vector form may be sometimes bet-
ter for representing a clip-art scene, but inmany of the above appli-
cations, further vectorizing the imagemay complicate the problem
but provide little advantage. To say the least, vectorizing a clipart
image still need a segmentation step, because most effective vec-
torization approaches just segment an image into regions before
the subsequent steps can be done.

Unlike general image segmentation, there tend to be stricter re-
quirements for clip-art image segmentation. On the one hand, high
precision is often required when segmenting a clip-art image. The
specificity of the clip-art contents makes the false segments more
noticeable in simple clip-art scenes than in natural images. Even
a small mistake made by segmentation could result in poor visual
quality. Take the segmentation result in Fig. 10(d) for example, the
small over-segmented strokes are striking in the simple and clean
segmentation map. Indeed, these artifacts also constitute a serious
problem for a subsequent process such as image vectorization. On
the other hand, efficiency of the segmentation is also important, as
the above applications are sometimes running on a mobile device,
or expected to be an interactivework-flowwith shortwaiting time.
For example, one may want to import a raster clip-art image into
a document/canvas as a vector element for high-quality display or
further editing. If image segmentation (a time-consuming step of
raster-to-vector conversion) can be instantly done, then the user
does not have to wait for a few seconds or even minutes before
any subsequent process, and hence the work flow becomes much
smoother and more productive. Consequently, high accuracy and
efficiency are generally both required in many applications, which
is intrinsically difficult to be accomplished simultaneously. We are
going to provide a solution for this problem in this paper.

There indeed exist several segmentation approaches specific to
clip-art images [1,3,2]. Detailed review could be found in the next
section. To the best of our knowledge, the current state-of-the-
art method for high quality clip-art image segmentation is Vector-
Magic [1], especially for those images where the color of each
region is uniform. The key to their success is an anti-aliased gener-
ative model that effectively captures the characteristics of a large
proportion of clip-art images. However, thesemethods are still not
sufficient for our purpose. They often operate on a few seconds or
evenminutes basis to balance accuracy andoverhead computation,
which is not fast enough for interactive purposes. Some other ap-
proaches (e.g. [11]) are fast, but these fall into general image seg-
mentation category. Such methods merely take characteristics of
clip-art images into account, and tend to suffer from unsatisfac-
tory accuracy when segmenting a clip-art image. Therefore, none
of the existing methods are suitable for our purpose.

To develop a fast and accurate algorithm, one natural way is to
speed up the method based on an anti-aliased generative model
since themost accurate algorithm relies on such amodel. However,
it is not an easy task. The reason is that the anti-aliased generative
model is typically used in a Bayesian framework and inevitably
lead to an optimization of a cost function that is computationally
expensive [1]. Unless amajor revision to such amodel is made, it is
difficult to significantly reduce the computational cost. Therefore,
to solve our problem, the key issue might be devising a novel
method without costly optimization algorithm while grasping the
essence of the anti-aliased generative model. This is also the main
challenge in the present work.

In this paper, we aim to address the above challenge, and pro-
pose a fast yet accurate method, ECISER (Efficient Clip-art Image
SEgmentation by Re-rasterization), for segmenting a clip-art im-
age. It takes advantage of the particular nature of clip-art images,
and segments the image by re-rasterization. Our method is typi-
cally more than 10 times faster than the state of the art approach
(i.e., Vector-Magic), while the segmentation quality of both meth-
ods is almost the same.

The main contributions of this paper are the following:

1. To the best of our knowledge, we are the first one to re-
veal the relationship between clip-art image segmentation
and aliased rasterization, and convert the image segmentation
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into the problem of re-rasterization. Even further, we pro-
pose an effective and efficient way to solve the latter prob-
lem. It is worth mentioning that the proposed method for
re-rasterization might be also used for super-resolution other
than segmentation.

2. Based on the re-rasterization, a complete practical segmenta-
tion algorithm, ECISER, is developed towards achieving fast and
accurate segmentation. Like current state-of-art approaches for
clip-art image segmentation, it could effectively avoid results
containing small over-segmented regions along object bound-
aries while preserving other details. But the computation cost
of the proposed algorithm is significantly reduced, which en-
ables more applications such as interactive cartoon animation
processing and mobile clip-art image editing.

3. As a byproduct of the first contribution, we propose a sim-
ple yet effective approach for obtaining ground truth label-
ing of clip-art image segmentation. More specifically, the
labels are fully automatically derived from the vector im-
ages. This method works well for clip-art segmentation label-
ing because clip-art image segmentation is closely related to
aliased rasterization. Based on such a method, we also present
a database of clip-art images segmented by pixel labels. This
database is to be made available to the public1 in the hope that
we can place the problem of clip-art image segmentation on
firm, quantitative ground.

The remainder of the paper is organized as follows. In Section 2,
we introduce some related work. Section 3 gives a rethinking of
clip-art image segmentation, and converts the original segmenta-
tion problem into a problemof re-rasterization. Section 4 describes
the approach for re-rasterization without anti-aliasing. Based on
this method, Section 5 develops the proposed segmentation algo-
rithm, ECISER. To evaluate ECISER, Section 6 presents the way to
construct a database of segmented clip-art images, followed by ex-
perimental results with comparison to state-of-the-art methods in
Section 7. Finally, we draw conclusions and give further discussion
in Section 8.

2. Related work

Image segmentation is one of the most challenging problems
in computer vision, even if for clip-art images. Many researchers
have done a lot of work in this area for years. We first analyze
why those widely used segmentation techniques are unsuitable
for our purpose, and then, we will show the reason why we finally
developed a novel segmentation algorithm.

In general, existing segmentation techniques could be divided
into three categories: (1) feature-space based techniques; (2)
image-domain based techniques; and (3) physics based tech-
niques. In the following, we will analyze methods in these cate-
gories in terms of accuracy and efficiency.

Feature-space based techniques. Segmentation approaches
in this category are typically based on histogram thresholding
[12,13] or cluster analysis [14,15]. They work well in a certain
feature space. Thus the regions resulting from these methods are
expected to be homogeneous with respect to the characteristics
represented in these spaces. However, there is no guarantee at all
that these regions also show spatial compactness, which is also
an important desirable property in clip-art image segmentation
applications beside homogeneity. As a result, the main problem
of these methods is connected with over-segmentation for clip-
art image. Lots of work has been done on region merging, which
performs suppression of this artifact (see e.g. [16]). However most

1 See http://ECISER.tk.

of the successful methods take advantage of user intervention.
Unsupervised region merging algorithms are usually difficult to
implement and introduce unacceptable time complexity.

Image-domain based techniques. Split-and-merge techniques
(e.g. [17]), region growing techniques (e.g. [18]), and edge based
techniques (e.g. [19,20]) fall into this category. In contrast to
feature-space based methods, image-domain based segmentation
approaches cluster pixels exclusively on the basis of their spa-
tial relationships. The resultant segmentation map is likely to be
with regions spatially well connected but with no guarantee that
these regions are also homogeneous in a certain feature space.
Therefore, classical algorithms in this category also suffer from
low accuracy of clip-art image segmentation. Recently, an edge
based method, Trapped-Ball [2], and another image-domain based
method, Vector-Magic [1], take advantage of the characteristics of
clip-art images, and make significant progress in terms of result
quality. Trapped-Ball is superior to Vector-Magic in dealing with
regions with complex colors rather than uniform ones. Another
recently proposed method [21] also performs pixel grouping in a
cartoon-like image. However, it is designed for aliased images and
hence probably fails when the input image is anti-aliased, which
is often the case for clip-art images. In this paper, we mainly focus
on segmenting regions with uniform color in an anti-aliased clip-
art image. To the best of our knowledge, Vector-Magic generally
produces the most precise segmentation of this kind of image. Be-
cause it can effectivelymodel the anti-aliased rasterization process
of clip-art vector images, and hence exploit more information to
resolve ambiguities arising from segmentation. However, this ap-
proach involves a computationally expensive optimization, which
makes the algorithm inefficient. Therefore it is still not suitable for
our purpose.

Physics-based techniques. Techniques in this category typi-
cally analyze how light interacts with colored materials and in-
troduce models of this physical interaction in the segmentation
algorithms (e.g. [22]). The aim of these methods is to overcome
segmentation errors arising fromhighlights and shadowsof the ob-
jects,which are rarewhen segmenting a clip-art image. Another in-
teresting algorithm [23] combines depth and color information to
improve image segmentation. However, depth information is ob-
viously unavailable in our case. Therefore, the improvement made
by these methods is limited for segmenting clip-art images, and
hence we do not consider such physical models in our approach.

In summary, all existing techniques in these three categories
could not fully meet both fast and accurate requirements for clip-
art image segmentation. Moreover, our problem is not able to
be solved by simply extending or combining these techniques.
Consequently, we are going to dig in a different way and seek for
a novel approach to segment a clip-art image in an efficient and
effective manner.

We will take advantage of both feature-based techniques and
image-domain based techniques. Therefore color homogeneity and
spatial compactness will be both considered in our approach.
Details of the proposed method will be given in the following
sections.

3. Rethinking clip-art image segmentation

As stated in previous sections, traditional ways are not ap-
propriate for fast and accurate clip-art image segmentation. This
motivates us to rethink from a different aspect of image segmen-
tation. In this way, we will somehow take advantage of the nature
of clip-art images to reduce the computational cost, and to resolve
ambiguities arising from segmentation. In this section, the specific
characteristics of clip-art images will be analyzed first. Then the
problem of clip-art image segmentation will be converted to a
problem of re-rasterization based on such analysis.

http://ECISER.tk
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Fig. 2. Relationship between image segmentation and aliased-rasterization. (a)
Input image. (b) Segmentation labels. (c) Vector version of input image (probably
unavailable). (d) Aliased rasterization result of the vector image. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

3.1. Characteristics of clip-art images

A clip-art image is intrinsically different from a natural image.
It often originates from an anti-aliased rasterization process for
a vector image. As is well known, anti-aliased rasterization algo-
rithms typically assign to a pixel a color that is the weighted av-
erage of all the shapes that make up that pixel. Here, each weight
is the portion of the pixel’s area that belongs to each shape. Take
the pixel P in Fig. 2 for example, the boundary between the green
shape and the black shape slices through the pixel P such that
60% of P belongs to the green shape and 40% of P belongs to the
black shape (Fig. 2(c)), then the rasterized pixel would be colored
as 0.6∗green+0.4∗black, which should turn out to be some shade
of darker green (Fig. 2(a)).

Consequently, a clip-art image has the following specific char-
acteristics:
1. There are a relative small number of shape colors in a clip-art

image, each of which is indeed the color of a shape in the corre-
sponding vector image. For example, there are just four shape
colors in the clip-art image shown in Fig. 1(d). Therefore four
clusters are presented in Fig. 1(e), compared with numerous
clusters in Fig. 1(b).

2. Each pixel is colored by convex combination of these shape col-
ors. The combinationweight of each shape color is proportional
to the coverage of the shape. The clear lines as well as a few
points inside the triangle in Fig. 1(f) indicate such a property.

All these characteristics, in some sense, provide additional prior
knowledge that could be leveraged to segment a clip-art image
more precisely and efficiently. Therefore in the following, we
would reformulate theproblemof clip-art image segmentation and
develop our approach based on these characteristics.

3.2. Segmentation by re-rasterization

As stated in Section 2, over-segmentation is the common
problem of most existing methods when segmenting a clip-art

image. Such artifacts often arise from blending edge pixels result-
ing from an anti-aliased rasterization process. Therefore, it is the
anti-aliased edges thatmake precise segmentationmuchmore dif-
ficult and ambiguous. In other words, if the edges are ‘‘crisp’’ like
the one in Fig. 2(d), the segmentation process could be undoubt-
edly much easier (compare Fig. 2(b) with Fig. 2(d), the segmenta-
tion labels are closely related to the result of aliased rasterization).
Based on the above analysis, we would seek a way to make the
blurry edges to be jagged and pixel-aligned before partitioning the
image into regions.

Such crisp edges could be generated by an aliased rasterization
process if the vector version of the clip-art (e.g., Fig. 2(c)) is
available. The reason is that rasterization without anti-aliasing
simply assigns to each pixel the color of the shape that the point at
the center of the pixel lies in. This all-or-nothing approach means
that even apixel that is actually split into several shapes of different
colors is only assigned the color of a single shape that happens to
contain the point at the geometric center of the pixel. Although
the resultant stair-stepping appearance (Fig. 2(d)) is undesired in
most cases of image displaying, such an effect is exactly what we
want in the context of recovering the aliased version of edges.
Consequently, re-rasterizing the original vector image would be
a potential solution to anti-aliased edge removal, and hence an
alternative way to precisely segment a clip-art image. To the best
of our knowledge, this would be a completely new perspective on
clip-art image segmentation.

However, the vector image of clip-art is generally unavailable.
And image vectorization, as is well known, is even more difficult.
Therefore the remaining problem is exploring a novel approach to
perform aliased re-rasterization on a clip-art image that is already
rasterized with anti-aliasing. Details will be given in Section 4.

4. Re-rasterization without anti-aliasing

The segmentation issue has been reformulated as a problem of
re-rasterizing clip-art image without anti-aliasing in the previous
section, we will discuss it and present a novel method to solve the
problem in this section.

As we all know, the vector form of the clip-art is unavailable
in most cases, we need to accomplish such re-rasterization in a
differentway. Note that aliased rasterization is all about looking for
an appropriate shape color for each pixel. Instead of traditionally
inferring each pixel value from an informative vector image, it
could be done in an alternative way: picking a shape color for each
pixel based on the underlying information from the raster data.
Thereby the remaining problems are:

1. How to find all shape colors of the raster input image?
2. Which of the shape colors should be assigned to a given pixel?

Wewill show that these two issues are non-trivial, and give our
solution in the following.

4.1. Shape color identification

It is often the case that shape colors are not given as input.
Hence we need to find all shape colors before determining which
should be assigned in turn to a certain pixel.

A natural way to identify such colors is based on color statistics.
However, this could be ambiguous when the pixels with a specific
blending (or noise) color are more than those with an ordinary
shape color. For instance, if there is a small gray dot in a large
rectangle with purple boundary (Fig. 3(a)), then the light purple
pixels resulting from anti-aliasing would be even more than the
gray pixels. In this context, any approaches based on simple color
statistics (Fig. 3(b)) probably consider light purple rather than gray
as a shape color.
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Fig. 3. Ambiguity arises when simple color statistics is used to identify colors of
various types of shapes. (a) An image containing three different types of shapes.
(b) RB histogram of the image. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

To avoid such blending colors or noises being considered as
ordinary shape colors, spatial information should be cooperated
to disambiguate the types of pixels. As is mentioned before, the
pixel values of a clip-art image generally result from rasterization
of some vector shapes. If the color of a shape is constant, then there
would be probably a local image patchwhere all pixels are assigned
with the color of that shape. Conversely, if there is a local patch
where all pixels have the same color, then the color is very likely
to be a shape color.

Based on the above analysis, we propose a window-based
method of shape color identification for a clip-art image. More
specifically, we use a sliding window with a specific size (will be
discussed later) to scan the entire image. If all pixels inside a win-
dow have exactly the same color c ∈ R3, then c would be identified
as a shape color of this image. After this process, there would be a
number of N different identified shape colors. We denote the set
of shape colors by C = {ci}Ni=1 for convenience in the subsequent
discussion.

This approach should work well in most cases if an appropriate
window size is chosen. According to the mechanism of image ras-
terization, a blending region arising from anti-aliased rasterization
is almost always thinner (typically 1–2 px width) than a meaning-
ful shape. If the size of the window is neither too large to mistak-
enly capture the color of the blending region, nor too small to omit
the color of an ordinary shape, then all shape colors would be iden-
tified and all identified colors are shape colors. Moreover, as the
pixels inside a window that satisfies the above condition are typi-
cally internal pixels of a shape, the color of these pixels is extremely
likely to be the exact color of the shape. Therefore, the shape colors
can be not only found but also estimated precisely.

Now we discuss the size of the sliding window mentioned
above. For a reliable estimate of the shape color, a window must
be large enough to have sufficient confident to determine if it is
completely inside the shape. But on the other hand, awindowmust
be small enough to identify the color of a tiny shape (e.g., gray dot
in Fig. 3(a)). Thus as the window size is increased from small to
large, the results range from complete but inaccurate shape colors
to accurate but incomplete shape colors.

To find the golden trade-off where shape colors are both accu-
rate and complete, we conduct the following experiment. First, we
collect a set of clip-art images with both raster form and vector
form.2 Next, we use various sizes of sliding windows to perform

2 These images are collected in the early phase of this research project, and are
used only for determining the best window size and confirming an observation
described in Section 4.2. Remarkably, this dataset is much smaller than (and hence
is quite different from) the one used for evaluating segmentation (presented in
Section 6).

Fig. 4. Precision and recall for different window sizes.

shape color identification for each raster image, and evaluate the
performance of each window size.

We evaluate the performance in terms of precision and recall
with different window size in order to select the right one. Note
that the vector content of each clip-art provides all ground truth
shape colors CT . Let CE

s be all estimated shape colors resulting from
the window size s. Then for each clip-art, we define the precision
as

precision =
|CT

∩ CE
s |

|CE
s |

and the recall as

recall =
|CT

∩ CE
s |

|CT |
.

The resultant average precision and average recall for eachwindow
size are shown in Fig. 4. From the experimental results, we can
conclude that 3×3 is the best size for thewindowbecause itwould
result in a sufficient high precision that a larger window would
not make significant improvement, as well as a relative acceptable
recall. Consequently, we will apply the fixed window size 3 × 3 in
our segmentation approach.

4.2. Pixel re-colorization

Given a set of shape colors found in Section 4.1, the next step
of re-rasterization is assigning to each pixel an appropriate shape
color. We will explain the detail of this process in the following.

Ideally, the best shape color to be assigned to a given pixel
should be the one that its corresponding shape takes the largest
proportion of the pixel. However, we have no idea which shape
colors take part in blending the pixel color, and what the blending
weights are. This is different from general image rasterization, as
the shape information in our case is unavailable. Thereby we need
to infer such information from the only available data, i.e., the input
image.

In general, the color of each pixel in a clip-art image can be
approximated by a convex combination of shape colors. Of course,
the number of shape colors that actually partake in blending a pixel
tend to be small. In other words, if there are many combinations
that give rise to the same color, then the one with the least shape
colors is preferred. To find such a combination, an intuitive way is
to assume that all shape colors take part in blending the pixel, and
hereby estimate the blending weights of the shape colors, subject
to the constraint that the blendingweight vector is sparse. It would
result in a constrained sparse decomposition problem: Given the
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a b c

Fig. 5. Statistics of errors using different number of colors to blend a pixel in clip-art images. (a) Using a single color; (b) Using two colors; (c) Using three colors. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a b

Fig. 6. Pixel re-colorization. (a) Path for searching related shape colors. (b) Blending weight estimation.

color cP of a pixel in the input image, the best blending weights
w = {wi}

N
i=1 would be

w∗
= argmin

w

1
2

cP −


i=1

N
wici


2

2

+ λ∥w∥1

subject to
N
i=1

wi = 1, wi ∈ [0, 1], i = 1, . . . ,N.

Here ci andwi denote a shape color and its blendingweight, respec-
tively. ∥w∥1 is the sparsity-inducing term, and λ is a slack variable
that balances the trade-off between fitting the pixel color perfectly,
and employing a sparse solution for blending coefficients.

However, solving the above optimization problem for all pixels
is computationally expensive. Therefore we need to estimate the
weights in a fast manner to meet our requirements.

We observe that in a typical clip-art image,most pixel colors are
either shape colors, or blended by two or three colors. To confirm
such observation, another experiment is conducted on the above
clip-art image dataset: We try to recreate the color of each pixel
by assigning any shape color (Fig. 5(a)), blending with any pair of
shape colors (Fig. 5(b)), and blendingwith any triple of shape colors
(Fig. 5(c)), respectively. Then we analyze the errors corresponding
to the best individual shape color, the best pair, and the best triple.
Results show that almost all pixels could be approximated by at
most a triple of shape colors with negligible error.

Based on the above observation, we only consider three special
cases when estimating the blending weights:

Case 1. The pixel color could be approximated by a single shape
color.

This is the case where the pixel lies in the internal region of a
shape. Most pixels in a typical clip-art image fall into this category.
To efficiently find the best shape color for the pixel, we build a
k-d tree for all shape colors at the beginning. Then given a pixel
color, we search for a nearest shape color using the k-d tree. It is

an O(logN) operation [24], which is extremely fast even when the
number of shape colors is large.

Case 2. The pixel color could be approximated by blendingwith two
shape colors.

Most boundary pixels correspond to this case. To find the two
shape colors, we first examine if any neighbor pixel color is close
to a shape color using the above k-d tree. The searching path is
illustrated in Fig. 6(a).When twodifferent neighbor pixel colors are
found satisfying the condition, the searching would be terminated
immediately. Let the two shape colors be cA and cB respectively.
Then the corresponding blendingweights would bewA and 1−wA,
where

wA =
(cP − cA)T (cB − cA)

∥cB − cA∥2
.

The approximation error would be

ϵ = ∥cP − cA∥2
− w2

A∥cB − cA∥2.

An illustration of these two terms is given in Fig. 6(b).
Case 3. The pixel color could be approximated by blending with

three shape colors.
This is a rare case, generally occurring at T-junction of bound-

aries. The three shape colors could be found in away similar to Case
2. Let the three shape colors be cA, cB, and cC respectively. Then the
corresponding blendingweightswould bewA,wB, and 1−wA−wB,
where

wA =
c22c13 − c23c12
c12c21 − c11c22

,

wB =
c23c11 − c13c21
c12c21 − c11c22

.

Here

c11 = (cA − cC )T (cA − cC ),
c12 = (cA − cC )T (cB − cC ),
c13 = (cC − cP)T (cA − cC ),
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c21 = (cA − cC )T (cB − cC ),
c22 = (cB − cC )T (cB − cC ),
c23 = (cC − cP)T (cB − cC ).

Obviously, all these three cases can be solved efficiently. There-
fore, the proposed re-rasterization algorithm should be very fast.
It is worth mentioning that although the above re-rasterization
is designed for segmentation, it might be used in image super-
resolution as well. More specifically, with the estimated shape col-
ors and blending information of each pixel, it would be easier to
reliably infer the sub-pixel structures, and hence to provide effec-
tive super-resolution image reconstruction for clip-art images.

5. Segmentation based on re-rasterization

In this section, we will present the details of our ECISER algo-
rithm. Generally speaking, it involves two main steps: re-coloring
for all pixels, and grouping similar pixels into regions.

With the help of the re-rasterization proposed in Section 4,
segmentation of clip-art images would be much easier. However,
there are still two issues to be considered in practice:

1. Although carefully designed for speed, re-colorization still
seems to dominate the time complexity of the whole pipeline.
How to apply a strategy for re-colorization to further reduce the
overall computational cost?

2. Given the re-rasterized image, how to efficiently group similar
pixels into regions?

We will discuss these two issues and give our solution in the
following.

5.1. Efficient re-colorization

Efficiency-oriented pipeline for re-colorization. As is ana-
lyzed in Section 4.2, there would be generally three possible cases
of re-coloring a pixel. It is impractical to consider all these cases for
every pixel. Moreover, the computational costs of three cases are
indeed different. In this present work, we will seek to find a strat-
egy that could reduce the overall computational cost here. More
specifically, we would consider computationally less expensive
operations first. By making those operations earlier, the space of
possible cases is made smaller during the later phases in which ex-
pensive operations are considered. The phases are as follows

Phase 1: Find all pixels that have an exactly same or very similar
color to a shape color. Such pixels should be undoubtedly assigned
with that shape color. Pixels in this category often make up a
very large number of the pixels in a typical clip-art image, and re-
colorization of such pixels is very computationally inexpensive.

Phase 2: Find the remaining pixels that could be approximated
by blending with two shape colors. This is a little more expensive.
However, by this point the total number of such pixels is
substantially reduced, making it less expensive than it would be
if the previous phase had not been used.

Phase 3: Find the remaining pixels that could be approximated
by blending with three shape colors. Re-coloring these pixels is
fairly expensive. However, such pixels would be very few since
almost all pixels had been processed in previous two phases.

Cache mechanism for re-colorization. To further speed up
re-colorization, we adopt a cache mechanism. More specifically,
we store estimated blending weights for frequently queried color
combination. Thereby if a cache hit, the algorithm immediately
reads the results without additional computation; if a cache miss,
the cache allocates a new entry. Moreover, we keep track of the
last queried color combination so that we always try this com-
bination first when re-coloring the next pixel. To evaluate the
computational impact that such mechanism has on the proposed

Fig. 7. Histogram of speedup when using a cache mechanism in our algorithm.

algorithm, we segment the clip-art images in the database pre-
sented in Section 6 with and without cache mechanism respec-
tively, and calculate the speedup, i.e., the ratio of the execution
time without a cache mechanism and the one with a cache mech-
anism, for each case. From the histogram of such speedup (Fig. 7),
we can see that the cachemechanism provides a 2–4× speedup for
a large proportion of the test images.

5.2. Grouping similar pixels

After re-colorization, pixels belonging to the same shape would
appear almost the same in color. To robustly and efficiently group
such pixels into a region, we adopt a graph-based method [11].

Let G = (V , E) denote an undirected graph to represent the re-
rasterized image, in which the vertexes v ∈ V represent the pixels
in the image. Each edge (vi, vj) = e ∈ E has a weight w(vi, vj) to
indicate the dissimilarity between pixels. The grouping process is
to partition V into regions {R}, in which each region R corresponds
to a sub-graph G′

= (R, E ′) where E ′
⊆ E. The internal difference

of a region R is defined as the largest weight in theminimum span-
ning tree MST(R, E ′) of the sub-graph G′

= (R, E ′), i.e. Int(R) =

maxe∈MST(R,E′) w(e). Then, theminimal internal difference of R1 and
R2 is also defined by appending a tolerance τ(R) for each region R:

MInt(R1, R2) = min(Int(R1) + τ(R1), Int(R2) + τ(R2)),

in which τ(R) = k/|R|, where |R| denotes the size of R and k is a
parameter. The region distance between R1 and R2 is defined as the
minimal edge weight between the two regions:

D(R1, R2) = min
vi∈R1,vj∈R2,(vi,vj)∈E

w(vi, vj).

The algorithm begins from initializing each pixel as a region.
Then two regions with the smallest region distance, represented
by R∗

1 and R∗

2 , will be merged if D(R∗

1, R
∗

2) ≤ MInt(R∗

1, R
∗

2). If
successful, repeat themerging process of the regions with the next
smallest region distance. The algorithm will stop if two regions
cannot be merged. Then, the remaining regions are the results of
the segmentation.

6. Automatic labeling of ground truth segmentation dataset

To conduct quantitative evaluation of clip-art image segmenta-
tion methods, we need a clip-art image dataset with ground truth
segmentation. Manual annotation of a large number of images is
too time-consuming, hence in this section we will seek for an au-
tomatic way to build up such database.

There already exist several datasets for evaluating general im-
age segmentation, such as BSDS300 [25], BSDS500 [20], SBD [26],
MSRC [27], and VOC2012 [28]. However, most images contained in
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Fig. 8. Qualitative comparison. (a) Input (b) Trapped-Ball’s result (c) Vector-Magic’s result (d) Felz–Hutt’s result (e) Mean-Shift’s result (f) Our result. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

these dataset are natural images, which are intrinsically different
from clip-art images. To quantitatively evaluating clip-art image
segmentation, one could make another dataset by hand-labeling
a set of ground-truth segmentations for clip-art images. However,
this method has two disadvantages: (1) the ground-truthmight be
inaccurate, as the data are labeled based on human intuition; (2)
labeling a large set of images is fairly laborious.

To overcome the above disadvantages, we propose a fully au-
tomatic way for constructing clip-art image segmentation dataset
for evaluation. It takes advantage of the particular characteristics of
clip-art image segmentation: it is a well-defined problem if a vec-
tor format of the image is available. In other words, there would be
a unique ground-truth segmentation of an image given the vector
content of that image. This enlightens us to infer such segmenta-
tion from the vector image.

More specifically, we first extract all shape boundaries from the
vector image, and then label each pixel in the raster image accord-
ing to these boundaries. There are two cases to be considered. First,
if a pixel is completely contained within a vector shape, then the
pixel should be given a label corresponding to that shape. Second,
if a pixel is covered by two ormore shapes, then the pixel should be
assigned to whichever shape contains the center of the pixel. Such
strategy is identical to some sort of aliased image rasterization.

Based on the above consideration,we first convert the boundary
of each shape present in the vector image into a polygon, then
use [29] to test if the center of a pixel in the raster image lies inside
or on the polygon. If it does, then the pixel would be assigned to
a label corresponding to that shape. After all pixels are labeled in
such away, a ground truth segmentation for a clip-art imagewould
be created.

In the present work, we collect a set of clip-art images that
are released into the public domain. Each clip-art has both raster
format and vector format available, and would be labeled in the
above way. As a result, we have compiled a dataset, currently
containing more than 10000 clip-art images along with ground
truth segmentations againstwhich the output of any clip-art image
segmentation algorithm may be compared.

7. Experimental results

To show the efficiency and effectiveness of the segmentation
approach developed in this paper, we quantitatively and qualita-

tively compare ECISER against several other widely used segmen-
tation approaches in terms of accuracy and efficiency.

Methods to be compared. It is worth noting that we are not
targeting at designing the best clip-art segmentation algorithm
with highest accuracy; instead, we aim at speeding up the state-
of-the-art algorithm from the algorithm perspective without (if
any) much degradation of performance. We restrict our com-
parisons to four alternative segmentation algorithms: Trapped-
Ball [2], Vector-Magic [1], Felz–Hutt [11] and Mean-Shift [30].
Trapped-Ball and Vector-Magic were chosen because they are the
current state-of-the-art approaches for clip-art image segmenta-
tion. For comparisons with general image segmentation methods,
we chose Felz–Hutt and Mean-Shift. Indeed there are many other
general image segmentation algorithms,we only consider two rep-
resentative methods because approaches in this category are gen-
erally not specific to clip-art segmentation and probably result in
unsatisfactory segmentations for clip-art images.

Dataset for testing. We compare these methods on the dataset
presented in Section 6. Most of the images in the dataset are clip-
art images with uniformly colored regions. Note that a clip-art
image might contain regions with gradient colors, which could be
perfectly segmented by Trapped-Ball. However, we mainly focus
on segmenting regions with uniform color in this paper, as a large
proportion of clip-art images fall into this category and it still
lacks a fast and accurate algorithm for such seemingly simple
segmentation tasks.

Parameter settings. ECISER is a fully automatic segmentation
approach that takes no parameters. However, the methods to be
compared to such as Trapped-Ball, Felz–Hutt and Mean-Shift re-
quire some parameters. We set the parameters of each of these
methods once, and used the same parameters to process all test
images. The parameters were chosen so that the resulting segmen-
tations would compare most favorably with regard to our own re-
sults.

7.1. Qualitative comparisons

To qualitatively compare ECISER with others, we provide a few
results obtained by ECISER as well as other methods. From the
comparison shown in Figs. 8–11, we can see our results, in general,
are as good as (or even better in some cases) those of the state-of-
the-art method, Vector-Magic in terms of quality.
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Fig. 9. Qualitative comparison. (a) Input (b) Trapped-Ball’s result (c) Vector-Magic’s result (d) Felz–Hutt’s result (e) Mean-Shift’s result (f) Our result.

a b c
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Fig. 10. Qualitative comparison. (a) Input (b) Trapped-Ball’s result (c) Vector-Magic’s result (d) Felz–Hutt’s result (e) Mean-Shift’s result (f) Our result.

More specifically, it is clear that the boundaries of regions
produced by ECISER and Vector-Magic agreemore closely with the
boundaries of salient image regions. Both of these method could
effectively avoid over-segmentation along object boundaries,
while preserving meaningful regions at different scales. In some
cases, our results are even superior, though not significantly, to
Vector-Magic’s. For example, Vector-Magic tends to generate a
bolder segment for a declining stroke-like region since they restrict
a segment to be a 4-connected region. It works well in most cases
(like red strokes in Fig. 8(c)), except where two regions are very
close to each other (see the misjoined regions in Fig. 9(c)).

Other methods typically generate segmentations of lower
quality than ECISER and Vector-Magic. For instance, Felz–Hutt
might suffer from over-segmentation along object boundaries (see
Figs. 8(d) and 10(d)), while losing small semantic regions (see
Fig. 9(d)). Note that even tuning the parameters could hardly avoid
these two unwanted effects at the same time.

The above visual inspection of the results offers compelling ev-
idence that our segmentations are comparable with those result-
ing from the current state-of-the-art methods in terms of quality.
To validate these results and demonstrate the efficiency of our ap-
proach, a quantitative evaluation of ECISER against other methods
will be presented in the following.

7.2. Quantitative comparisons

To quantitatively evaluate the effectiveness of the above seg-
mentation algorithms, we use several standard measures, namely
the Probabilistic Rand Index (PRI) [31], the Global Consistency Er-
ror (GCE) [25], and the Boundary Displacement Error (BDE) [32].

Probabilistic Rand Index. The Probabilistic Rand Index (PRI)
counts the fraction of pairs of pixels whose labeling is consistent
between the computed segmentation and the ground truth. Since
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Fig. 11. Qualitative comparison. (a) Input (b) Trapped-Ball’s result (c) Vector-Magic’s result (d) Felz–Hutt’s result (e) Mean-Shift’s result (f) Our result.

Fig. 12. PRI of different segmentation methods w.r.t. image size.

a single image in our dataset corresponds to an individual ground
truth segmentation, we do not have to average across multiple
ground truth segmentations to account for scale variation in hu-
man perception. Therefore the PRI in our case is equivalent to the
Rand Index measure. As the value of PRI and the size of the seg-
mentation map are generally related, we divide the entire image
size range of our dataset into several intervals, and compute aver-
age PRI of the segmentation maps that fall into each interval. The
average PRI w.r.t. image size resulting from each segmentation ap-
proach being compared is shown in Fig. 12. Note that PRI ranges be-
tween [0, 1], higher is better. It can be seen that our segmentation
results have almost the same PRI as that of Vector-Magic. The PRI
of the two general image segmentation approaches is relative low,
because they do not directly model regions with constant color.

Global Consistency Error. The Global Consistency Error (GCE)
measures the extent to which one segmentation can be viewed
as a refinement of the other. Fig. 13 shows the average GCE w.r.t.
image size resulting fromdifferent segmentation approaches. Note
that GCE ranges between [0, 1], lower is better. It can be seen that
ECISER, Vector-Magic and Trapped-Ball all produce results with
much lower GCE than other approaches. Although Trapped-Ball
suffers from over-segmentation more often than Vector-Magic,

Fig. 13. GCE of different segmentation methods w.r.t. image size.

the performance of these two methods is almost the same here,
because GCE does not penalize over-segmentation at all, i.e., the
highest score could be achieved by assigning each pixel as an
individual segment.

Boundary Displacement Error. The Boundary Displacement
Error (BDE) measures the average displacement error of boundary
pixels between two segmented images. It defines the error of one
boundary pixel as the distance between the pixel and the closest
pixel in the other boundary image. BDE ranges between [0, ∞) in
the unit of pixels, lower is better. From the average BDEw.r.t. image
size resulting from different segmentation approaches (shown in
Fig. 14), we can see that ECISER is slightly superior to Trapped-
Ball and Vector-Magic. Similar to GCE, BDE also penalizes under-
segmentationmore heavily than over-segmentation. Therefore the
performance of Trapped-Ball and Vector-Magic is almost the same
in terms of BDE.

To summarize the quantitative comparison in terms of accu-
racy, ECISER and other methods specific to clip-art images gen-
erally produce better segmentations compared with the general
image segmentationmethods. Though ECISER is not a clear winner
in terms of the above three indexes compared with the state-of-
the-art clip-art segmentation approaches, we show that ECISER is
much more efficient in the next subsection.
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Fig. 14. BDE of different segmentation methods w.r.t. image size.

Fig. 15. Average running time of different segmentation approaches w.r.t. image
size. Notice that the y-axis is in logarithmic scale.

7.3. Efficiency comparisons

To show the efficiency of ECISER, we illustrate the average time
w.r.t. image size using different approaches (Fig. 15). These times

were measured on a 2.53 GHz CoreTM 2 Duo machine. It is clear
that ECISER runs much faster (typically more than 10 times faster)
than the state of the art method, i.e., Vector-Magic. Felz–Hutt is
also extremely efficient, but produces clip-art segmentation of
unsatisfactory quality in general.

Consequently, ECISER achieves dramatic computational speed-
ups over the current state-of-the-art approaches, while preserving
almost the same quality of results.

8. Conclusion

In this paper, we have proposed a novel approach for clip-art
image segmentation. Different from other methods, the proposed
approach segments an image into regions by re-rasterizing the im-
age, which takes full advantage of characteristics of clip-art im-
ages. Both quantitative and qualitative experimental results show
that ECISER is typically comparable to the current state-of-the-art
methods in terms of segmentation quality, but takes much less
computation time.

However, there still exist some limitations in our method. First,
we assume the color of each region in the image to be uniform,
which is not always the case in clip-art images. For non-uniform
color (e.g. gradient color) regions, ECISER would suffer from over-
segmentation (Fig. 16(d)). In contrast, Trapped-Ball can handle
this case well as they use a more complex color model for each
segmented region. Second, although ECISER is robust to noise in
high quality JPEG images, the segmentation quality would be de-
graded rapidly as the images become noisier (Fig. 16(e)). Third,
low-resolution images consisting of complex shapes might be also
poorly segmented due to the ambiguities present in the observed
data and the limited representation ability of pixel-level segmen-
tation map (Fig. 16(f)).

As future research, we consider, to a certain extent, addressing
the above limitation. To avoid over-segmentation for gradient color
regions, the only non-trivial problem is identifying all possible
gradient color settings in the input image, since both pixel re-
colorization and pixel grouping could be easily extended to the
case of gradient color regions. To make the algorithm more robust
to noise in the input, we consider incorporating an efficient
denoising method to pre-process the original image. If efficiency
is not important, [33] or [34] should be a good choice.

a b c

d e f

Fig. 16. Cases producing poor results. First row: input images. Second row: Our segmentation results. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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