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Effective Clipart Image Vectorization Through
Direct Optimization of Bezigons
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Abstract—Bezigons, i.e., closed paths composed of Bézier curves, have been widely employed to describe shapes in image
vectorization results. However, most existing vectorization techniques infer the bezigons by simply approximating an intermediate
vector representation (such as polygons). Consequently, the resultant bezigons are sometimes imperfect due to accumulated
errors, fitting ambiguities, and a lack of curve priors, especially for low-resolution images. In this paper, we describe a novel
method for vectorizing clipart images. In contrast to previous methods, we directly optimize the bezigons rather than using other
intermediate representations; therefore, the resultant bezigons are not only of higher fidelity compared with the original raster
image but also more reasonable because they were traced by a proficient expert. To enable such optimization, we have overcome
several challenges and have devised a differentiable data energy as well as several curve-based prior terms. To improve the
efficiency of the optimization, we also take advantage of the local control property of bezigons and adopt an overlapped piecewise
optimization strategy. The experimental results show that our method outperforms both the current state-of-the-art method and
commonly used commercial software in terms of bezigon quality.

Index Terms—clipart vectorization, clipart tracing, bezigon optimization
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1 INTRODUCTION

IMAGE vectorization, also known as image tracing,
is the process of converting a bitmap image into

a vector image. There are various types of vectoriza-
tion. In the present work, we focus on clipart image
vectorization. In such a case, the input raster is a
clipart image, which is generally composed exclu-
sively of digital illustrations like cartoons, logos, and
symbols. Notably, this kind of images do not include
photographs or scans of real hand-made drawings.

There is a huge demand for such a conversion tech-
nique. According to a survey from [1], more than 7
million man hours are spent on vectorizing images in
the United States every year, and approximately 60%
of the more than 10 million images to be vectorized
are clipart images such as logos and other rasterized
vector art. As further evidence of the large demand
for clipart image vectorization, there is also a large
market for online services that specialize in tracing
clipart images. The conversion can be manually per-
formed, but this may require a substantial amount
of time and effort, particularly for those users who
are not proficient in tracing images. This situation
provides strong motivation for the development of an
automated algorithm for precise vectorization.

Notably, most modern methods that are appropriate
for vectorizing clipart images [1], [2], [3], [4] use
bezigons to represent the resultant vector contours,
which has become the standard because of the com-
pactness and editability of bezigons.

However, almost no existing methods are special-
ized for directly obtaining bezigons. Such methods
typically direct most of their effort toward the gen-

eration of intermediate polygons (Figure 1b) and con-
sequently estimate bezigons (Figure 1c) that repro-
duce these polygons rather than the original image
[1], [2], [4]. Among these methods, [1] (also known
as Vector Magic [5]) generally produces the most
accurate bezigon boundaries. 1 The key to Vector
Magic’s success is that an effective and differentiable
polygon-based rasterization function was found, al-
lowing polygon parameters to be precisely optimized
based on this function and polygon-specific priors.
Nevertheless, even this state-of-the-art method may
still result in low-quality vectorized bezigons (Fig-
ure 1c), and other existing methods are much more
susceptible to such problems. There are three reasons
for this issue. First, errors introduced in the poly-
gon estimation stage cannot be effectively corrected
in the curve-fitting stage without observation of the
raster input. Second, even if the estimated polygons
are perfect, ambiguities still exist in the curve-fitting
stage because of the nature of data approximation.
Third, bezigon-based priors have not yet been fully
developed. In short, generating bezigons in such an
indirect manner may have a substantial negative effect
on the accuracy of the bezigon boundaries. This poses
a serious problem for clipart vectorization because
even a slightly improper or irrational boundary can
be identified as a significant artifact in a clipart image.

To solve the problems summarized above while
retaining the advantages of the state-of-the-art
method [1], an intuitive approach is to devise an
effective optimization mechanism that is specific to

1. In the case of vectorizing cartoon images with non-uniform
color regions or decorative lines, [4] may generate superior
bezigons.
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(a) (b) (c)

Fig. 1: Traditional pipeline of clipart vectorization. The dotted
curves represent ground-truth outlines. (a) Raster input. (b) In-
termediate representation (green polygons). (c) Final vector result
(green bezigons).
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Fig. 2: Continuity of various candidate data energy functions. (a)
Variation of a bezigon with the y coordinate of its control point C.
(b) Variation of the data energy with the y coordinate of C under
various rasterization functions.

bezigons.
However, establishing such a framework is non-

trivial. In general, a direct optimization of bezigons
would necessitate an appropriate rasterization func-
tion specialized for bezigons because such a func-
tion defines the bezigons’ fidelity to the raster image
and serves as a fundamental basis for the entire
bezigon-specific optimization mechanism. However,
most available rasterization functions are not suited
to this purpose because commonly used bezigon ras-
terization methods are typically based on sampling
sub-pixel locations of the pixel grid 2; the functions
used in these methods are non-differentiable, contain
many discontinuities, and are piecewise flat (have
zero gradient with respect to the bezigon param-
eters) almost everywhere (as shown in Figure 2).
These properties impose a serious limitation on the
effectiveness and efficiency of the optimization proce-
dure. Consequently, searching for a suitable bezigon-
specific rasterization function is the first challenge and
the foremost problem that must be overcome.

Even if this first challenge is overcome, the solution
space might remain large and contain many unreason-
able bezigons that give rise to nearly the same raster
image (Figure 3 illustrates examples of such illegal

2. In polygon-specific rasterizers, the bezigon is approximated by
a polygon before actual rasterization.

(a)

small angle change

(b)

short handle

(c) (d)

Fig. 3: Four types of failure cases that occur when only data energy
is considered. (a) Self-intersection. (b) False corners with small angle
variations. (c) Short handle. (d) Twisted section.

cases). We observe that reasonable bezigons, when
serving as vector primitives, occupy only a small
fraction of the parameter space of general bezigons.
There should be specific prior knowledge available
regarding the bezigons in typical vector images, and
it is essential to incorporate such prior knowledge to
resolve the ambiguities and further constrain the so-
lution space. Unfortunately, little academic attention
has been directly focused on such prior knowledge;
the available curve priors suggested in the literature
either cannot be directly applied for bezigons [1] or
are not specialized for vectorization [6]. Therefore,
studying the characteristics of both reasonable and
unreasonable bezigons for image vectorization, and
incorporating closely related prior knowledge into
our bezigon optimization, is another challenge to be
addressed.

In this paper, we present solutions to the above
challenges and propose a bezigon-specific optimiza-
tion framework for more precise clipart vectorization.
Our main contributions are as follows:
• By analyzing several rasterization approaches,

we identify an appropriate rasterization func-
tion, theoretically prove certain analytic proper-
ties thereof that facilitate effective optimization
for our purposes (using the theory of general-
ized functions [7]), and experimentally validate its
compatibility and robustness for vectorizing var-
ious types of clipart images. Thus, we establish a
framework for clipart vectorization via the direct
optimization of bezigons. Meanwhile, we pro-
vide some approximate criteria for determining
whether a rasterization function is suitable for
optimization- based image vectorization.

• Based on an intensive study of reasonable
bezigons in typical vector images as well as
unreasonable bezigons arising from experiments,
we classify the common illegal cases of bezigon
primitives into four categories: self-intersections,
false corners with small angle variations, short
handles, and twisted sections (Figure 3). To
address these illegal cases, we suggest a self-
intersection prior term, an angle-variation prior
term, a Bézier-handle prior term, and a curve-
length prior term. All these terms are incorpo-
rated into our framework to further constrain the
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solution space and to provide broadly reasonable
guidance for bezigon optimization. Moreover, er-
rors in the curve boundaries, if any remain, be-
come visually insignificant because the resultant
bezigons are more reasonable and aesthetically
pleasing in general.

• By taking full advantage of the local control
property of Bézier curves, we propose a piece-
wise optimization strategy to effectively solve the
problem of bezigon optimization. This strategy
considerably reduces the computational cost and
makes our vectorization method more practical.

• Based on the above techniques, we suggest a
new bezigon optimization framework. In such a
framework, we can effectively vectorize a clipart
image or refine vector results obtained using
other approaches. Notably, such a framework is
generally capable of incorporating any bezigon
rasterization model and additional prior knowl-
edge for the purpose of image vectorization or
other applications, such as curve stylization.

The experimental results show that our method
outperforms both the current state-of-the-art method
and commonly used commercial software in terms
of bezigon quality, especially in tough vectorization
cases such as smooth boundaries with high curva-
tures, obtuse corners, and slightly bent edges.

The remainder of this paper is organized as follows:
Section 2 briefly reviews existing clipart vectorization
approaches. Section 3 formulates the problem of cli-
part vectorization in terms of bezigon optimization.
An overview of the proposed vectorization frame-
work and our points of focus is also provided in this
section. Section 4 fully explains our approach to the
direct optimization of bezigons for image vectoriza-
tion. The experimental results and comparisons are
presented in Section 5, and the paper concludes with
a discussion of further perspectives on this work in
Section 6.

2 RELATED WORK

Various other types of image vectorization methods
exist that are specific to line drawings [8], [9], [10],
[11], [12], [13], [14], natural images [15], [16], [17], [18],
[19], [20], [21], [22], [23], and pixel art [24]. However,
these methods merely capture the intrinsic nature of
clipart images and are likely to fail in generating
precise curve boundaries; thus, they are not well
suited for the task considered here.

In the last decade, several methods [1], [2], [4], [25],
[26] have been proposed for clipart image vectoriza-
tion. These methods typically involve segmenting the
input image into a set of regions and inferring the
color and the boundary location for each region.

To overcome the poor quality of the segmentation
that results from general image vectorization, [25]
exploited a visual feature of certain types of cartoons,

i.e., shapes that are typically bounded by bold dark
contours, and succeeded in producing a more precise
segmentation technique for clipart images. However,
this approach could only address regions enclosed by
such strokes, which is not always the case in modern
clipart images.

To further improve the segmentation and more se-
mantically infer the shape color, [4] proposed a novel
trapped-ball segmentation method that can segment
a clipart image more semantically even when some
regions are non-uniformly colored. Moreover, this
approach considers temporal coherence and is capable
of vectorizing cartoon animations. Such progress is
impressive, but segmentation, color estimation and
vectorizing animations are not our topics of focus.

Perhaps the most difficult aspect of image vector-
ization still lies in the inference of boundary locations.
As previously mentioned, [1] is the state-of-the-art
vectorization algorithm with respect to its precision
of boundary location, especially for the vectorization
of uniformly colored shapes. However, the contour
optimization of this method, which plays the most
important role in the algorithm, is specialized for
polygons rather than bezigons and hence occasionally
results in inaccurate bezigons. It seems that extending
this method’s approach to curve fitting by somehow
managing to fully use the information provided by
the raster input might solve the problem. However,
this is a non-trivial task for the reasons mentioned in
Section 1. Moreover, this process would result in a
bezigon optimization problem similar to ours.

In addition to the academic literature, there are also
a number of related commercial tools, such as Adobe
Illustrator [27], Corel CorelDRAW [28] and Vector
Magic [5] (a product based on the technology of [1]),
as well as open-source projects such as Potrace [2]
and AutoTrace [3]. Of these tools, Adobe Illustrator
is the most representative, and Vector Magic achieves
the best results in terms of bezigon boundary preci-
sion. In this paper, we compare our algorithm with
these two software packages. Although the technical
details of most commercial tools are unavailable, the
experimental results indicate that these tools exhibit
a problem similar to (or even worse than) that of [1],
[5].

In summary, insufficient precision in identifying
bezigon boundaries is the most common shortcoming
of existing vectorization methods. Therefore, improv-
ing the precision of bezigon boundaries, which is im-
portant for vectorizing clipart images, is the primary
goal of this paper.

3 PROBLEM FORMULATION AND OVERVIEW
OF OUR FRAMEWORK

To facilitate a better understanding of this paper,
in this section, we formulate the related problem
along with the relevant notation and then provide
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an overview of the proposed vectorization framework
and our topics of interest.

For the sake of simplicity, we consider only a single
bezigon. Our work can easily be extended to situa-
tions that involve two or more bezigons because each
bezigon can be independently vectorized.

3.1 Problem Formulation

Given a raster image, the primary task of clipart image
vectorization is to infer a bezigon from the raster
input. In a typical vector image, a bezigon can be
completely determined by its geometric parameters and
its color parameters.

Geometric parameters. As previously mentioned, a
bezigon S(t) is simply a series of Bézier curves joined
end to end, i.e.,

S(t) =


B1(t), t ∈ [0, 1],

B2(t− 1), t ∈ [1, 2],
...

BN (t−N + 1), t ∈ [N − 1, N ].

(1)

Here, N denotes the number of curves in the
bezigon, and Bj(t) represents the j-th curve, which is
assumed without loss of generality to be a 2D cubic
Bézier curve with the following parametric form:

Xj(Bx; t) =
∑3

i=0

(
3
i

)
(1− t)3−itixj,i+1,

Yj(By; t) =
∑3

i=0

(
3
i

)
(1− t)3−itiyj,i+1,

j = 1, 2, . . . , N,
t ∈ [0, 1],

(2)

where the (xj,i, yj,i) ∈ R2(i = 1, 2, 3, 4; j = 1, 2, . . . , N)
constitute the four control points of the j-th Bézier
curve. The last control point of one curve coincides
with the starting point of the next curve, i.e., xj,4 =
xj+1,1, yj,4 = yj+1,1(j = 1, 2, . . . , N). Thus, all geomet-
ric parameters B of a bezigon can be represented as

B = (Bx, By)

Bx=


x1,1 x1,1 x1,1

x2,1 x2,1 x2,1

...
...

...
xN,1 xN,1 xN,1

 , By=


y1,1 y1,1 y1,1

y2,1 y2,1 y2,1

...
...

...
yN,1 yN,1 yN,1

 .

(3)
Color parameters. Without loss of generality, we

consider that the color of the bezigon at pixel (x, y)
is represented by the function c(C;x, y). If the region
color is assumed to be uniform, then c(C;x, y) = C0,
and the color parameter is C0 = (r0, g0, b0) ∈ R3. If
a quadratic color model is assumed, then c(C;x, y) =
C0 +C1x+C2y+C3x

2 +C4xy+C5y
2; thus, the color

parameters are C = (C0, C1, C2, C3, C4, C5) ∈ R18.
Now, for a given raster input image I , our objective

can be considered to be the inference of the parame-
ters

W = (B,C) (4)
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Fig. 4: Overview of our framework. (a) Raster input. (b) Segmenta-
tion result. (c) Initial bezigons. (d) Optimized bezigons.

from I such that the bezigon that is defined by W
can explain the input image I . In other words, the
raster image of the bezigon should be similar to the
input image. The problem is obviously a typical non-
linear and ill-posed problem because there may be
many possible solutions because of uncertainties in
the imaging process and ambiguities of visual inter-
pretation. To resolve the intrinsic ill-posedness of the
problem, we must further constrain the solution space
by introducing additional prior knowledge regarding
bezigons in vector images.

Based on the above discussion, we will adopt an
energy minimization approach that is widely used in
many computer vision algorithms [29].

We first define our energy function as

E(W ; I) = Edata(W ; I) + Eprior(W ), (5)

where Edata(W ; I) is the so-called data energy, which
measures the fidelity of a vector solution to the
observed raster image, and Eprior(W ) is the so-
called prior energy, which is the formulation of our
constraints or prior knowledge regarding reasonable
bezigons for the above- mentioned vector images.

Consequently, the problem of this paper will be for-
mulated in terms of identifying the optimal bezigon
W ∗ such that

W ∗ = arg min
W∈Ω

(E(W ; I)). (6)

3.2 Overview of Our Framework for Optimization

Once our energy function is fully specified, the en-
tire energy minimization framework can be divided
into two phases: a bezigon initialization phase and a
bezigon-specific optimization phase (Figure 4).

Bezigon initialization phase. The initialization
phase takes a raster image (Figure 4a) as input and
outputs a set of initial bezigons (Figure 4c). These
bezigons can be either obtained using other existing
vectorization methods or extracted from the input
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image. A simple, fully automated method of accom-
plishing this extraction consists of two steps: a seg-
mentation step that is used to segment the input
image into a set of regions [30] (Figure 4b) and a
boundary-fitting step to fit a piecewise cubic Bézier
curve to the boundary of each region [31] (Figure 4c).
As another option, the initial bezigons can also be
manually drawn or interactively refined by the user.
Regardless of which method is used, the obtained
bezigons serve as initial parameters in the next phase;
hence, they are not necessary highly accurate. The
technical details of this phase are outside of the scope
of this paper.

Bezigon optimization phase. The optimization
phase is the primary concern of this paper. This
phase includes direct bezigon optimization, which
is the task that we are emphasizing. This process
takes the initial bezigons from the first phase as input
and outputs the optimal bezigons as the final vector
result. In contrast to other existing vectorization ap-
proaches, this phase of our framework consists of nei-
ther simply applying a curve-fitting algorithm (e.g.,
[31]) nor indirectly optimizing bezigons according
to an intermediate representation (e.g., polygons in
[1]). Instead, we optimize the bezigon parameters by
directly observing the raster input and incorporating
both the image-tracing experience of experts and prior
knowledge from existing hand-drawn vector images.
The bezigon optimization and these sources of in-
formation are simultaneously bridged by our data
energy and prior energy. In this way, unnecessary
accumulated errors introduced by the intermediate
process can be avoided, and hence, the quality of
the resultant bezigon can be improved. However, as
stated previously, there are several as- yet-unresolved
challenges arising from such an optimization ap-
proach. Therefore, our paper will emphasize these
issues. Section 4 presents a discussion of our solution
method and explains our main contributions.

There are three major advantages to our framework.
First, the error arising from the entire vectorization
pipeline can be minimized. Second, any bezigon-
based priors can be conveniently incorporated to
generate even more reasonable results, once we have
a better understanding of bezigons in typical vector
images, or to cause the resultant bezigons to sat-
isfy certain constraints of other specific applications.
Third, our vectorization approach behaves similarly to
bezigon evolution, which is particularly well suited to
the vectorization of clipart animations, and facilitates
the further refinement of inaccurate bezigons resulting
from other vectorization approaches.

4 APPROACH FOR DIRECTLY OPTIMIZING
BEZIGONS

In this section, we solve some key issues related
to bezigon optimization. The optimization involves

specifying the data energy with the proper rasteriza-
tion model (Section 4.1) and several bezigon-specific
prior terms (Section 4.2). To more efficiently solve
Equation 6, we also explore the nature of bezigon
parameters and propose a piecewise optimization
strategy (Section 4.3). In the following, we will use
the same notations as are used in Section 3.

4.1 Data Energy
To fully utilize the information provided by the input
image, we define the data energy as the distance
between the input image I and the image generated
by rasterizing a vector solution W :

Edata(W ; I) =
1

l0
‖R(W )− I‖2 (7)

=
1

l0

∑
(x,y)∈Λ

‖R(W ;x, y)− I(x, y)‖2.(8)

Here, the function R(W ) models a specific bezigon
rasterization process. The function takes the parame-
ters W of a bezigon as input and produces a raster im-
age of the same size as the input image I . R(W ;x, y)
and I(x, y) denote the values at pixel (x, y) in the
rasterized image given by R(W ) and in the input
image, respectively. Λ is the lattice of the input image
I . The denominator l0 represents the arc length of
the initial bezigon. This denominator is fixed during
the optimization and can be easily estimated from
the geometric parameters B0 = (B0

x, B
0
y) of the initial

bezigon, i.e.,

l0 =

N∑
j=1

∫ 1

0

√(
dXj(B0

x, t)

dt

)2

+

(
dYj(B0

y , t)

dt

)2

dt.

Two issues now arise for consideration. First, a
bezigon rasterization function for R(W ;x, y) should
be specified because such a function is essential
to make Equation 8 suitable for optimization. It is
also one of the most challenging aspects of direct
bezigon optimization. As previously mentioned, the
most important contribution of the current state-of-
the-art approach [1] also lies in finding an appropriate
rasterization function, but one that is specific to poly-
gon optimization. For bezigon optimization, however,
research concerning suitable rasterization functions is
still lacking in the existing literature. Second, we must
address the case in which the input image is not gen-
erated by the specified rasterization function used for
the data energy because the rasterization method that
generates the given input image is generally unknown
and most likely not the same as our function.

Regarding the first issue, several methods exist
for directly or indirectly rasterizing bezigons [32],
[33], [34], [35], [36], [37], [38], [39], each of which
corresponds to a candidate rasterization function
R(W ;x, y). However, we find that nearly all such
functions yield poor results when a typical solver for
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nonlinear optimization (such as conjugate gradient, l-
BFGS, or NEWUOA) is applied. This is because most
available rasterization functions are either piecewise
flat, or discontinuous, almost everywhere (as shown
in Figure 2b). Although such discontinuities pose no
problems for common rasterization tasks, they can
strongly degrade the effectiveness or efficiency of op-
timization. Various specific optimization approaches
(such as [40]) can be applied in the case of discon-
tinuous functions. However, our experimental results
indicate that such approaches often fail to produce
satisfactory bezigons. Moreover, these solvers are rel-
atively slow, which limits their use in image vectoriza-
tion. Based on the above experiments and analysis, we
recognize that an appropriate rasterization function
should exhibit certain properties, such as continuity
with respect to the bezigon parameters. Moreover, if
the rasterization function is also differentiable with
respect to those parameters, more efficient and effec-
tive solvers can be adopted to optimize our energy
function to obtain better results.

In the search for proper rasterization approaches,
the approach presented in [35] came to our atten-
tion. This approach uses a hierarchical Haar wavelet
representation to analytically calculate an anti-aliased
raster image of bezigons. According to [35], for a
bezigon W , the pixel color value at (x, y) in the
resultant raster image can be calculated as follows:

RMS(W ;x, y) =

c(C;x, y)

N∑
j=1



∑
k∈K

c
(0,0)
0,k (B; j)ψ

(0,0)
0,k (x, y)

+

d∑
s=0

∑
k∈K


c
(0,1)
s,k (B; j)ψ

(0,1)
s,k (x, y)

+c
(1,0)
s,k (B; j)ψ

(1,0)
s,k (x, y)

+c
(1,1)
s,k (B; j)ψ

(1,1)
s,k (x, y)




(9)

Here, s represents a specific scaling from the origi-
nal resolution to the pixel solution d, and k = (kx, ky),
kx ∈ Kx ⊂ Z, ky ∈ Ky ⊂ Z represents a specific trans-
lation in the finite set K = Kx×Ky ⊂ Z2 correspond-
ing to all possible translations in the current scaling.
ψ

(·)
s,k(x, y) and c

(·)
s,k(B; j) are a two- dimensional Haar

wavelet basis function and its coefficient, respectively.
The definitions of these two functions can be found
in Appendix A.1.

Although [35] provides a closed-form solution for
rasterizing bezigons, the continuity and differentia-
bility of RMS(W ;x, y) are not obvious because of
the discontinuity of the Haar wavelet basis functions.
One of the most important tasks of this section is to
present the proofs of the continuity and differentia-
bility of this rasterization function. The latter is not
straightforward. To obtain the proof, we must rely on
several properties and operations from the theory of
generalized functions [7].

Note that for any given coordinate (x, y),

RMS(W ;x, y) is a function of the bezigon parameters
W . To establish the function’s continuity and
differentiability, we present the following theorems.

Theorem 1 (continuity): RMS(W ;x, y) is a continu-
ous function with respect to all bezigon parameters
W .

Proof: As previously stated, the bezigon param-
eters W consist of the color parameters C and the
geometric parameters B. According to Equation 9,
RMS(W ;x, y) is continuous as long as the assumed
color model c(C;x, y) is continuous with respect to
the color parameters C, which is often the case. With
respect to the geometric parameters B, RMS(W ;x, y)
is also continuous. A detailed analysis can be found
in Appendix A.2.

Obviously, if RMS(W ;x, y) serves as our rasteriza-
tion function R(W ), then the resultant data energy
is also a continuous function. The smooth curve that
corresponds to our data energy in Figure 2b reflects
such a property as well. The continuity of the data
energy not only enables us to apply a common solver
for the nonlinear optimization but also facilitates the
resolution of any ambiguity that arises from the ob-
servation of the input data.

Theorem 2 (differentiability): RMS(W ;x, y) is differ-
entiable with respect to the bezigon parameters W .

Proof: Most color models c(C;x, y) are differen-
tiable with respect to the color parameters C. In such
cases, RMS(W ;x, y) is obviously differentiable with
respect to the color parameters, according to Equa-
tion 9. However, the differentiability of RMS(W ;x, y)
with respect to the geometric parameters B is not
obvious. We use the theory of generalized functions to
analyze this matter. Because of space limitations and
the complexity of the discussion, the proof and the
derivatives are presented in Appendix A.3.

Based on the above analysis and theorems, we
can conclude that RMS(W ;x, y) may be a suitable
candidate for the rasterization function (W ;x, y) in
Equation 8. Therefore, this rasterization function may
be adopted in the proposed framework. Then, our
final data energy can be rewritten as

Edata(W ; I) =
∑

(x,y)∈Λ

‖RMS(W ;x, y)− I(x, y)‖2. (10)

Now, we consider the second issue. Because there
are many commonly used rasterization methods, it
is often the case that the input raster image is not
generated by the rasterization method used in our
data energy term. This could be an issue if there
are significant differences in the rasterization results
between our chosen method and the method used
to generate the input image. Therefore, to ensure the
practical utility of the proposed vectorization method,
we must investigate whether the selected rasterization
function can closely approximate the rendering results
of other commonly used rasterization approaches.
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Fig. 5: Histograms of differences between pixel values produced by
RMS(W ;x, y) and those produced by the other rasterizers listed
in the figure.

Fortunately, our selected rasterizer RMS(W ;x, y)
is still a suitable choice in this context. To prove
this claim, we perform the following experiment: We
collect a set of real-world vector images. All these
vector images are rasterized by each of the com-
monly used anti-aliased rasterizers, using the recently
proposed methods, and by RMS(W ;x, y). Note that
the only possible differences in images produced by
different rasterizers lie in pixels that intersect the
bezigon boundary. To further clarify the compari-
son, we consider only the differences among such
pixels in the resultant images. Histograms of these
differences are presented in Figure 5. It is readily
apparent that a large proportion of the “boundary”
pixels that are rendered by any other rasterizer remain
identical those produced by RMS(W ;x, y). Moreover,
all distributions have means of zero and small vari-
ances. Therefore, the pixel values generated by our
rasterization function can be safely assumed to be
a good approximation to those generated by other
commonly used rasterization methods, and hence, our
rasterization function can still accurately model the
original rasterization process of most clipart images.

In summary, we have proven the suitability of our
bezigon rasterization function for optimization as well
as its compatibility with various clipart raster input,
and we have presented the definition of our data
energy. Notably, for any other rasterization function
that is a candidate for application to vectorize a
certain type of image, a similar procedure should be
followed to evaluate the suitability and compatibility
of that function.

4.2 Prior Energy
After the data energy has been carefully selected, var-
ious simple cases (e.g., the vectorization of a simple
bezigon in a high-resolution raster image) can already
be effectively addressed when there is adequate infor-
mation implicit in the observed raster data. However,
it is more often the case that the bezigons are relatively
complex and that the information available in the
raster input is inadequate. In such a case, profound

uncertainty regarding the correct solution may remain
if the data energy alone is considered. Therefore, the
optimization may result in unreasonable bezigons that
can be easily identified by the human eye.

Indeed, our intensive experiments provide evidence
of such issues. More specifically, the failure cases of di-
rect bezigon optimization using only data energy gen-
erally fall into four categories: (a) self-intersections,
(b) false corners with small angle variations, (c) short
handles, and (d) twisted sections (Figure 3).

All these bezigons are considered to be unreason-
able because they are aesthetically unpleasing and,
according to expert opinion, are unlikely to be drawn
or traced by a professional illustrator. These types of
bezigons are also rare in typical vector images. (Taking
self-intersection as an example, we find that very
few bezigons in vector images from the Open Clipart
library [41] intersect with themselves. Most bezigons
that exhibit self-intersection are believed to have been
created by an amateur or automatically traced from
a raster image.) The reason for the occurrence of
such illegal bezigons is that their corresponding raster
images are quite similar to the input images (com-
pare Figures 6f, 8f, 9f and 10f with 6h, 8h, 9h and
10h, respectively), although their vector forms are
significantly different from the ground-truth images
(compare Figures 6b, 8b, 9b and 10b with 6d, 8d, 9d
and 10d, respectively). This situation results in low
data energy, especially when the resolution of the
input image is relatively low.

Our prior energy is designed precisely to solve the
above-mentioned problems and to ensure that the
resultant bezigons are reasonable and aesthetically
pleasing. More specifically, we construct a prior func-
tional to reduce the likelihood of each type of failure
cases. Thus, our prior energy has the following form:

Eprior(B) = λsptEspt(B) + λaptEapt(B)

+ λhptEhpt(B) + λlptElpt(B)
(11)

where Espt, Eapt, Ehpt and Elpt represent the self-
intersection prior term (SPT), the angle-variation prior
term (APT), the Bézier-handle prior term (HPT) and
the curve-length prior term (LPT), respectively, and
λspt, λapt, λhpt and λlpt are their respective weights.
Each of the prior terms is specifically defined and
explained in the following subsections.

4.2.1 Elimination of Self-intersection
Certain approaches are seemingly capable of avoiding
self-intersection but are not feasible in practice. One
intuitive method is to enforce a set of highly coupled
nonlinear inequality constraints and use a primal-dual
interior point method [42] for optimization. However,
this approach is not suitable in our case because of its
computational complexity. As another naı̈ve method,
we could assign a large constant energy to a bezigon
that is detected as exhibiting self-intersection. How-
ever, this provides almost no guidance for a bezigon
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: An example of eliminating self-intersection. (a) The entire
ground-truth vector image and the local patch to be processed. (b)
Result of optimization without the SPT. (c) Result of optimization
with the SPT. (d) Ground truth. (e-h) are the rasterization results
corresponding to (a-d), respectively.

(a) (b)

Fig. 7: Measuring the extent of self-intersection. (a) and (b) address
the first and second intersection points, respectively. The shorter
divided portion in each phase is indicated by the red curve.

that has already manifested self-intersection during
optimization.

Instead, we attempt to analytically measure the
extent of self-intersection and provide an effective reg-
ularization to automatically avoid bezigons with self-
intersection. The primary advantage of our method
is that it not only is capable of preventing self-
intersection but also provides effective guidance to
eliminate self-intersection that has already occurred.
Moreover, it does not require expensive computation.

The procedure is illustrated in Figure 7. We first
estimate all intersection points (indicated by red dots),
if any. Each such point divides the bezigon outline
into two parts. We consider the shorter of these parts
(shown as red curves) and measure the extent of
self-intersection by summing over their lengths. More
formally, the measurement can be written as

Espt(B) =
∑

(t1,t2)∈T

min (L(t1, t2), L(0, N)− L(t1, t2)).

(12)
Here, T = {(t1, t2)|t1 < t2, S(t1) = S(t2)} is the set
of partitions corresponding to all intersection points
(red dots in Figure 7), and L(t1, t2) represents the arc
length along the curve S from t1 to t2 , i.e.,

L(t1, t2)=

dt2e∑
j=bt1c+1

∫ tj,2

tj,1

√(
dXj(Bx, t)

dt

)2

+

(
dYj(By, t)

dt

)2

dt,

(13)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8: An example of regularization for angle variations. (a)
The entire ground-truth vector image and the local patch to be
processed. (b) Result of optimization without the APT. (c) Result
of optimization with the APT. (d) Ground truth. (e-h) are the
rasterization results of (a-d), respectively.

where tj,1 = max(t1 − j + 1, 0) and tj,2 = min(t2 − j +
1, 1).

The energy term Espt penalizes significant self-
intersection. The more severe an intersection is, the
more closely the length of a shorter part approaches
the length of a longer part, and hence, the larger
Espt will be. When there is no self-intersection, Espt

is equal to zero. Our experiments demonstrate that
optimization using the SPT results in bezigons that
contain very little self-intersection and are likely to be
close to the ground-truth image in terms of topology
(see Figure 6c).

4.2.2 Regularization for Angle Variations

Although a simple curve-smoothing algorithm may
remove small angle variations, such a method will
most likely fail to preserve other visually significant
corners. Moreover, it may not always be possible
to identify the saliency of the corners using a fixed
threshold for angle variations. Consequently, we must
develop a more sophisticated method of smoothing
out insignificant corners while preserving the small
number of significant corners.

For this purpose, we penalize the sum of all angle
variations. As a result, the optimized bezigon will
consist of predominantly zero-angle variations and
a small number of non-zero angle variations. This
is important because it incorporates corner detection
into the bezigon optimization.

More formally, we denote the two tangent vectors
of the j-th endpoint by aj = (xj,1−xj−1,3, yj,1−yj−1,3)
and bj = (xj,2 − xj,1, yj,2 − yj,1). Then, the APT can
be written as follows:

Eapt(B) =

N∑
j=1

cos−1 aj · bj

‖aj‖‖bj‖
. (14)

The experimental results demonstrate that opti-
mization with the APT can retain the smoothness
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9: An example of the avoidance of short Bézier handles. (a)
The entire ground-truth vector image and the local patch to be
processed. (b) Result of optimization without the HPT. (c) Result
of optimization with the HPT. (d) Ground truth. (e-h) are the
rasterization results of (a-d), respectively.

of the bezigon while preserving visually significant
corners (Figure 8c).

4.2.3 Avoidance of Short Bézier Handles

To guard against the possibility of short handles, we
penalize any short handle using an inverse barrier
function

Ehpt(B) =

N∑
j=1


1√

(xj,2−xj,1)2 + (yj,2−yj,1)2

+
1√

(xj+1,1−xj,3)2 + (yj+1,1−yj,3)2

 .

(15)
This term imposes a large penalty on short handles

because Ehpt(B) tends toward infinity as any handle
length tends toward 0. When the length of each
handle is sufficiently large, this energy will be very
small and hence will not engender serious side effects.

It can be experimentally demonstrated that opti-
mization using the HPT considerably reduces the
occurrence of unnatural bezigons, as illustrated in
Figure 9b. Although the resultant handle may some-
times be slightly longer than it should be (compare the
locations of the control points in Figure 9c with those
in Figure 9d), such a result only affects the quality or
editability of the vector results in general.

4.2.4 Curve-Length Prior

Based on the experience of experts who are proficient
in image tracing, a traced curve tends to be stretched
as much as possible unless there is strong evidence
that the curve should shrink or twist. This prior
knowledge can be used to eliminate invalid bezigons
of this type because the occurrence of a highly twisted
curve without strong evidence in support of such
twisting from the raster input can be easily identified.

Based on such prior knowledge, we penalize the
curve length to avoid invalid bezigons of this type.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10: An example of the application of the curve-length prior.
(a) The entire ground-truth vector image and the local patch to be
processed. (b) Result of optimization without the LPT. (c) Result
of optimization with the LPT. (d) Ground truth. (e-h) are the
rasterization results of (a-d), respectively.

Thus, the LPT can be defined as follows:

Elpt(B) =

N∑
j=1

∫ 1

0

√(
dXj(t)

dt

)2

+

(
dYj(t)

dt

)2

dt. (16)

Figure 10c demonstrates that the unexpectedly
twisted curve of Figure 10b, for which there is insuf-
ficient evidence in the observed data, can be avoided
through the adoption of the LPT.

4.3 Piecewise Bezigon Optimization

Once we have obtained the energy function devel-
oped in the previous sections, in many cases, this
function can be minimized using a general non-linear
optimization method. However, because a typical
bezigon often consists of a large number of param-
eters to be optimized and because the valid range for
each parameter is large, the efficiency and even the
convergence of the optimization process might be an
issue. However, bezigon parameters possess a strong
local control property. We may reduce the number of
redundant calculations by fully utilizing this property.

In this section, we explore the nature of bezigon
parameters and propose a piecewise optimization
strategy that allows our high-dimensional problem to
be decomposed into several subcomponents that may
be individually solved.

The fundamental concept of piecewise optimization
is to optimize only a subset of the geometric param-
eters of each bezigon at any given time. This task is
feasible because the effect of varying any given control
point is limited to a local region of the bezigon.

More specifically, we regard two consecutive Bézier
curve sections as one curve piece. Therefore, a bezigon
with N curve sections also consists of N overlapped
curve pieces. All curve pieces will be successively
optimized. When optimizing a curve piece, we fix
the first and last endpoints of the curve piece and
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Fig. 11: Overlapped piecewise optimization. The curve sections
being optimized are shown in red. (a) Optimizing the curve piece
Pj−1. (b) Optimizing the curve piece Pj .

determine the optimal solution for the four interme-
diate control points and the middle endpoint. We first
optimize the five active control points (the red points
in Figure 11a) of one curve piece and subsequently
optimize the corresponding points (the red points in
Figure 11b) of the next curve piece. It should be noted
that the two consecutive pieces overlap and that two
of the intermediate control points (e.g., those shown
in red in both Figure 11a and Figure 11b) are shared.
Therefore, all intermediate control points will be op-
timized twice in individual iterations. The process
iteratively progresses from the first curve piece to the
last.

Formally, we represent the geometric parameters of
the j-th piece to be optimized as follows:

Pj =

(
xj,2 xj,3 xj+1,1 xj+1,2 xj+1,3

yj,2 yj,3 yj+1,1 yj+1,2 yj+1,3

)
. (17)

All remaining geometric parameters P̃j of the
bezigon are held fixed during the present optimiza-
tion. Therefore, optimizing this curve piece amounts
to identifying the optimal configuration P ∗j that min-
imizes a function composed of the local energies, i.e.,

P ∗j = arg min
Pj∈Ωj

[
Edata(Pj ; P̃j , I) + Eprior(Pj ; P̃j)

]
.

(18)
Here, Ωj is the space of all possible geometric param-
eters for the j-th piece.

Such a strategy substantially increases the efficiency
of the entire optimization. Although the objective
function 18 is quite similar to Equation 6, the solution
space Ωj = R10 is much smaller than Ω. Therefore,
the original high-dimensional problem can be de-
composed into a set of lower-dimensional problems,
which greatly improves the efficiency of the over-
all optimization process. Moreover, all prior energy
terms, except the SPT, are simply the sum of the cor-
responding energy of each curve section. Therefore,
we can consider only two related sections when cal-
culating these terms. In this manner, a large number
of redundant computations can be eliminated.

Piecewise optimization not only is fast but also pro-
vides satisfactory bezigons with almost no decrease in
accuracy. The experimental results indicate that after
all curve pieces are traversed two or three times, in
most cases, the resultant bezigon is nearly perfect.

As an optional step, we can jointly optimize all
geometric parameters once more to further improve
the result. Because our piecewise procedure can pro-
vide substantially more accurate input for further op-
timization, this subsequent global optimization can be
significantly more efficient than it would be without
piecewise optimization. The entire process of bezigon
optimization is summarized in Algorithm 1.

Algorithm 1 Bezigon Optimization

1: repeat
2: for j = 1 to N do
3: Optimize Pj according to Equation 18
4: Update B according to Pj

5: end for
6: until converged
7: Optimize B according to Equation 6 (optional)

The overlapped piecewise optimization strategy
provides a fast yet accurate method of bezigon op-
timization, which is an important prerequisite for the
practical application of our vectorization approach.

5 EXPERIMENTS

To demonstrate the effectiveness of the approach de-
veloped in this paper, in this section, we quantita-
tively and qualitatively compare our method with
other vectorization methods. As stated in Section 2,
many vectorization algorithms and software packages
exist. However, most academic work on vectoriza-
tion is not relevant for comparisons because it is
primarily focused on photographs or other types of
vectorization. We restrict our comparisons to two
approaches that are specialized for the vectorization
of clipart images. One method is Vector Magic [5],
which was developed on the basis of the state-of-
the-art method proposed by [1] 3. The other software
package we consider is Adobe Illustrator [27], which
is a representative example of a widely used commer-
cial vectorization software. The experimental results
demonstrate that our approach is superior to these
methods in terms of bezigon quality.

5.1 Implementation
To evaluate the effectiveness of the proposed bezigon
optimization method, we have implemented a proto-
type image vectorization system.

The core of our system is bezigon optimization. Be-
cause of the continuity and differentiability of our en-
ergy function, either a curve piece or a global bezigon

3. [4] may produce a more reasonable segmentation than [1],
especially when the input image contains non-uniform color re-
gions or decorative lines, and is probably the best method for vec-
torizing clipart animations. However, as previously stated, neither
segmentation nor video vectorization is one of our topics of focus.
Therefore, we do not offer a comparison with [4] in the present
work.
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can be effectively optimized using many available
optimization algorithms (such as NEWUOA [43], l-
BFGS [44], and the conjugate gradient method [45]).
Note that there are four tuning parameters in our
objective function, namely, the weights of the four
prior terms. Empirically, we set λspt = 1.0 (to strongly
penalize self-intersection), λapt = 0.08, λhpt = 0.1
and λlpt = 0.1. Although there may be other weight
settings that would yield better performance, we
did not perform a thorough search for the optimal
weights. According to our experimental results, the
proposed method is generally insensitive to these pa-
rameters. Our preset weights should yield satisfactory
results. However, as the quality of the raster input
decreases (e.g., low-resolution input), fine tuning λapt
may become necessary to generate perfect bezigons.
Although our framework does not intrinsically rely
on any assumption regarding the color model, for
simplicity of implementation and convenience of fair
comparisons with the most commonly used clipart
image vectorization methods, our prototype system
currently assumes that the color in each bezigon is
uniform 4, i.e., c(C;x, y) = C0 and the color parameter
C = C0 is an arbitrary vector in the RGB color space.

The initial bezigons can be either extracted from
the input image or obtained using other vectorization
methods. They are not required to be highly accurate.
Most initial bezigons in our experiments are far from
perfect. Of course, if the initial pose drifts too far from
the optimal pose (e.g., approaches random bezigons),
our bezigon optimization may become trapped in a
local optimum and output imperfect results. However,
in practice, this rarely occurs because it is not very
difficult to estimate a bezigon that is sufficient to serve
as an initial solution. The real difficulties lie in the sub-
sequent optimization, i.e., achieving bezigons of even
higher precision, which is the key issue addressed in
this paper.

Note that because this prototype system was pri-
marily developed as a proof of concept, the speed
of the process is not a priority at the moment. Our
implementation code is currently written in Python,
a dynamically typed and interpreted language. The
code is run on a laptop with an Intel Core i5-2410M
@ 2.53 GHz processor with 4 GB of memory. The total
execution time varies (10 secs to 10 mins) as a function
of the complexity of the shapes to be vectorized. It
should be much faster when implemented in a static
language. Moreover, our method can be highly paral-
lelized by virtue of the nature of wavelet rasterization,
which may also considerably improve the efficiency.

5.2 Quantitative Comparisons
We use a fidelity metric to quantitatively compare
our results with those of other methods. The fidelity

4. To the best of our knowledge, this assumption is also adopted
by most existing clipart image vectorization approaches, including
Vector Magic and Adobe Illustrator.
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Fig. 12: Histograms of the increases in the PSNR achieved by our
method compared with (a) Vector Magic and (b) Adobe Illustrator.

metric generally provides a good indication of the
characteristics that define a good vectorization algo-
rithm. To further evaluate the proposed method based
on human aesthetic judgment, we also present a user
study.

For both comparisons, we collected a set of clipart
images available in both raster and vector formats. All
the raster images served as inputs to our algorithm
and to the other vectorization methods. Some meth-
ods considered in the comparison require parameter
tuning. To perform a fair comparison, the dominant
parameters of these methods were adjusted until the
number of bezigons produced as output were ap-
proximately equal to the number of bezigons in the
ground-truth vector. Then, we compared the vector
images resulting from the different methods with
respect to fidelity and user satisfaction. The details
of both comparisons are presented below.

Comparison via peak signal-to-noise ratio mea-
surement. The quality of a vectorization is often
evaluated in terms of the PSNR (peak signal-to-noise
ratio) or RMSE (root-mean-square error) [1], [4]. Be-
fore evaluation, both the resultant vector image and
the ground-truth image were rasterized at a specific
resolution.

Figure 12 presents the histograms of the the in-
creases in the PSNR that were achieved by our
method with respect to Vector Magic (Figure 12a) and
Adobe Illustrator (Figure 12b). It is evident that our
method consistently yields a higher PSNR compared
with competing methods. More specifically, our re-
sults reveal an increase in the PSNR of 0-5 dB with
respect to Vector Magic and an increase of 10-20 dB
with respect to Adobe Illustrator.

Comparison via a user study. We also performed
a user study to obtain a further evaluation based on
human aesthetic judgment. For this purpose, a pair-
wise comparison test was created. We prepared 120
pairs of vector results. Each pair consisted of a vector
image generated by our method and a vector image
generated by another method (either Vector Magic or
Adobe Illustrator). We constructed a web interface
to show each pair of vector images, including their
control points, but with no creator vectorizer name
attached. Several participants with graphic design
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Fig. 13: Results from a user study that compared our results with
those of (a) Vector Magic and (b) Adobe Illustrator.

backgrounds were then asked to determine whether
one image was much better than, better than, almost
the same as, a little worse than, or much worse than
another image in comparison with the ground truth.
The statistical results are presented in Figure 13. This
figure indicates that our results were considered to be
superior those of the current state-of-the-art method
(Vector Magic) in nearly 80% of the pairwise compar-
isons. Approximately one quarter of the images were
deemed to be much better (Figure 13a). Compared
with the representative commercial software (Adobe
Illustrator), almost all of our results were considered
to be better, and half of them were judged to be much
better.

To summarize the quantitative comparisons, our
approach is found to be superior to both the state-of-
the-art algorithm and the representative commercial
tool in terms of both fidelity and user satisfaction.

5.3 Qualitative Comparisons

For qualitative comparison of our method with the
other methods, we provide a few results (Figures 14-
16) obtained using our approach and the competing
methods. Because of space limitations, we highlight
only one local patch for each image (shown in the
even rows of Figures 14-16). From the comparison, we
observe that our results, in general, are more faithful
to the raster input and that the shapes of the resultant
bezigons are more reasonable and visually pleasing.
More specifically, our strengths lie in the following
cases.

Case 1: smooth boundary with high curvature.
In a typical clipart image, smooth boundaries with
high curvature are often found in the round corners
of a shape (Figure 14j and Figure 14t). Traditional
methods typically use a chain of densely sampled
points to represent such structures and subsequently
fit Bézier curves to the chain. The problem with this
approach is that reconstruction of curves from such
an intermediate representation can be excessively
ambiguous in such regions. Therefore, the resultant
bezigons exhibit false corners (see the redundant cor-
ners in Figures 14g, 14h, and 14r). Instead, our method
directly infers the bezigons from the raster input

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 14: Comparisons in cases of smooth boundaries with high
curvature. From left to right: raster input, Adobe’s result, Vector
Magic’s result, our result, ground truth.

to reduce such ambiguities to the greatest possible
extent. Consequently, our bezigons contain fewer false
sharp corners (Figure 14i and 14s).

Case 2: obtuse corners. Many shapes to be vec-
torized contain obtuse corners (Figures 15j and 15t).
Preserving such corners is very important even when
the result is visually satisfactory because it can be
difficult to subsequently edit the vectorized shapes.
However, for the same reason discussed in Case 1,
traditional methods tend to smooth out such corners
or yield a curve endpoint with an incorrect location
(e.g., the overly smoothed boundaries in Figures 15h,
15q and 15r). Our method benefits from the direct
optimization of the bezigons and avoids errors in-
troduced by fitting sampled points that cannot accu-
rately indicate the correct location of an obtuse corner.
Therefore, our results typically preserve more obtuse
corners (Figures 15i and 15s).

Case 3: slightly bent edges. Vectorizing various
detailed structures, such as slightly bent edges (Fig-
ures 16j and 16t), is also difficult for traditional meth-
ods. Because the error associated with the genera-
tion of an intermediate representation is unavoid-
able, small perturbations of the point chain are often
considered to be noise rather than signal. Therefore,
certain slightly bent edges in the resultant bezigons
are straightened (Figures 16g, 16h and 16r). In our
framework, we trust only the original raster input and
any prior knowledge regarding the curves. Although
not every type of structure can be preserved (e.g.,
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Fig. 15: Comparisons in cases of obtuse corners. From left to
right: raster input, Adobe’s result, Vector Magic’s result, our result,
ground truth.
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Fig. 16: Comparisons in cases of slightly bent edges. From left to
right: raster input, Adobe’s result, Vector Magic’s result, our result,
ground truth.

large perturbations or zigzag-like structures may be
suppressed based on a priori knowledge of typical
vector images), small shapes and slightly bent edges
are more likely to be preserved in our results (Fig-
ures 16i and 16s).

From the analysis presented above, we can con-

(a) (b) (c) (d)

Fig. 17: Cases producing poor results. (a) A noisy input image.
(c) A low-resolution input image with complex content. (b)(d) Our
vectorized output.

clude that our direct bezigon optimization for image
vectorization produces more convincing vector results
in most cases.

6 CONCLUSION AND FUTURE WORK

We have presented a novel framework for clipart
image vectorization. In contrast to other methods,
the proposed approach optimizes bezigons by directly
observing the raster input and incorporating bezigon-
based priors to minimize the errors introduced by
other intermediate procedures. Both quantitative and
qualitative comparisons demonstrate that the quality
of the bezigons generated by our approach is typically
higher compared with those generated by the current
state-of-the-art method and by commonly used com-
mercial software.

Of course, certain types of clipart images (e.g., noisy
images or low-resolution images that contain complex
structures) exist that are too ambiguous to be precisely
vectorized by any automated approach, including our
method (Figure 17 shows such cases). Perhaps the best
way to address these images is to incorporate a small
amount of user intervention. For this purpose, our
system provides a friendly graphical interface for user
refinement during the course of bezigon optimization.
The evolving bezigons are presented in the interface.
The user is allowed to modify the location of any
control point by dragging the mouse cursor. Our
system takes the modified bezigon as a new initial
bezigon and performs the subsequent optimization.

As future research, we will resolve additional am-
biguities by incorporating more prior knowledge re-
garding vector images for bezigon optimization. Be-
cause we directly optimize the bezigons, it is trivial
to incorporate such prior information into our frame-
work.

We also plan to develop a commercial software
package based on the proposed method. To make
the software as efficient as possible, we will optimize
the code of the current implementation and consider
parallelization of the proposed approach. Remarkably,
many components of our framework, ranging from
the wavelet rasterization to the optimization of local
structures that are completely irrelevant to each other,
can be highly parallelized.
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APPENDIX A
In this appendix we will introduce the complete
definition of the rasterization function RMS(W ;x, y),
where W are the parameter set of a bezigon, and give
a proof to illustrate the continuity and differentiability
of this function with respect to the geometrical param-
eters.

A.1 Basic Definitions

Before describing the rasterization function, we in-
troduce some basic definitions that will be needed
throughout this section.

Based on [35], RMS(W ;x, y) uses a hierarchical
Haar wavelet representation to analytically calcu-
late an anti-aliased raster image of a bezigon. Haar
wavelets, as is well known, are represented by its
mother wavelet function

ψ(t) =


1, t ∈ [0, 1

2 ],

−1, t ∈ [ 1
2 , 1),

0, otherwise.
(19)

and its scaling function

φ(t) =

{
1, t ∈ [0, 1),

0, otherwise.
(20)

Based on the above two functions, the 1D Haar
basis with a scaling parameter s ∈ Z and a translating
parameter l ∈ Z could be formally defined as

ψs,k(t) = ψ(2st− l), t ∈ R, (21)
φs,k(t) = φ(2st− l), t ∈ R. (22)

Now let k = (kx, ky) ∈ Z2, the 2D Haar basis
defined as following will be used later:

ψ
(0,0)
s,k (x, y) = 2sφs,kx

(x)φs,ky
(y), (x, y)∈R2, (23)

ψ
(0,1)
s,k (x, y) = 2sφs,kx(x)ψs,ky (y), (x, y)∈R2, (24)

ψ
(1,0)
s,k (x, y) = 2sψs,kx

(x)φs,ky
(y), (x, y)∈R2, (25)

ψ
(1,1)
s,k (x, y) = 2sψs,kx

(x)ψs,ky
(y), (x, y)∈R2. (26)

A.2 Rasterization Function RMS(W ;x, y) And Its
Continuity

According to [35], the value of pixel (x, y) in the
raster image of a given 2D bezigon, indicated by the

parameters W = (B,C), takes the form

RMS(W ;x, y) =

c(C;x, y)

N∑
j=1



∑
k∈K

c
(0,0)
0,k (B; j)ψ

(0,0)
0,k (x, y)

+

d∑
s=0

∑
k∈K


c
(0,1)
s,k (B; j)ψ

(0,1)
s,k (x, y)

+c
(1,0)
s,k (B; j)ψ

(1,0)
s,k (x, y)

+c
(1,1)
s,k (B; j)ψ

(1,1)
s,k (x, y)




,

B ∈ R6N , C ∈ R3, (x, y) ∈ Λ,

d is a given integer,K is a finite set of Z2.
(27)

Here, c(·)s,k(B; j) correspond to the wavelet coefficients
contributed by the j-th Bézier curve segment:

c
(0,0)
s,k (B; j) =

∫ 1

0

2sφ̃s,kx
(Xj(Bx; t))

φs,ky (Yj(By; t))Y ′j (By; t)dt,

c
(0,1)
s,k (B; j) =

∫ 1

0

−2sψ̃s,kx
(Yj(By; t))

φs,ky (Xj(Bx; t))X ′j(Bx; t)dt,

c
(1,0)
s,k (B; j) =

∫ 1

0

2sψ̃s,kx
(Xj(Bx; t))

φs,ky (Yj(By; t))Y ′j (By; t)dt,

c
(1,1)
s,k (B; j) =

∫ 1

0

2sψ̃s,kx
(Xj(Bx; t))

ψs,ky (Yj(By; t))Y ′j (By; t)dt.

(28)

The notations Bx, By and Xj , Yj(j = 1, 2, . . . , N) are
the same as Equation 2 and 3 in Section 3. Note that
given the bezigon parameters B, both Xj and Yj are
functions of one variable t, while both X ′j and Y ′j are
first-order derivatives with respect to t. For all s ∈ Z
and l ∈ Z,

φ̃s,l(t) =
∫ t

0
φs,l(u)du, t ∈ R, (29)

ψ̃s,l(t) =
∫ t

0
ψs,l(u)du, t ∈ R. (30)

It is obvious that both φ̃s,l(t) and ψ̃s,l(t) are con-
tinuous with respect to the variable t respectively.
Also, if t = h(B) is a continuous function of any
parameters of B, both φ̃s,l(t) and ψ̃s,l(t) are too. From
Equation 2, it is easy to see that both Xj(Bx; t) and
Yj(By; t) are continuous with respect to any param-
eters of Bx and By . Therefore, c(·)s,k(B; j) are also
continuous with respect to B. Thus the continuity of
RMS(W ;x, y) with respect to geometrical parameters
B is totally determined by above discussion and its
formula 27. Such property is also reflected in Figure 2,
where the data energy function using RMS(W ;x, y)
is continuous with respect to an arbitrary geometrical
parameter.
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A.3 Derivatives of RMS(W ;x, y) with respect to
geometrical parameters

We will show that RMS(W ;x, y) is differentiable with
respect to the geometrical parameters B, which ver-
ifies Theorem 2 in Section 4. Since the discontinuity
of Haar function, the conclusion of Theorem 2 is not
obvious. To achieve this goal, we will use the theory
of generalized functions and generalized derivatives
[7]. Following deductions are all in the sense of gen-
eralized function and generalized derivative.

We first express formally such derivatives as

∂RMS(W ;x, y)

∂xj,i
=

N∑
j=1



∑
k∈K

∂

∂xj,i
c
(0,0)
0,k (B; j)ψ

(0,0)
0,k (x, y)

+

d∑
s=0

∑
k∈K



∂

∂xj,i
c
(0,1)
s,k (B; j)ψ

(0,1)
s,k (x, y)

+
∂

∂xj,i
c
(1,0)
s,k (B; j)ψ

(1,0)
s,k (x, y)

+
∂

∂xj,i
c
(1,1)
s,k (B; j)ψ

(1,1)
s,k (x, y)




,

B ∈ R6N ,
(31)

and

∂RMS(W ;x, y)

∂yj,i
=

N∑
j=1



∑
k∈K

∂

∂yj,i
c
(0,0)
0,k (B; j)ψ

(0,0)
0,k (x, y)

+

d∑
s=0

∑
k∈K



∂

∂yj,i
c
(0,1)
s,k (B; j)ψ

(0,1)
s,k (x, y)

+
∂

∂yj,i
c
(1,0)
s,k (B; j)ψ

(1,0)
s,k (x, y)

+
∂

∂yj,i
c
(1,1)
s,k (B; j)ψ

(1,1)
s,k (x, y)




,

B ∈ R6N

(32)

for all j = 1, 2, . . . , N , i = 1, 2, 3, 4, and (x, y) ∈ Λ.
Then the remaining problem is to discuss the dif-

ferentiability of Haar basis coefficients with respect to

geometrical parameters, i.e., the existence of
∂c

(·)
s,k(B;j)

∂xj,i

and
∂c

(·)
s,k(B;j)

∂yj,i
for all j = 1, 2, . . . , N , i = 1, 2, 3, 4,

s = 0, 1, . . . , d, and k ∈ K.
Generalized Derivatives of Haar Basis Functions.

It is well known that the generalized derivative of
φ(t):

φ′(t) = δ(t)− δ(t− 1), t ∈ R. (33)

Here δ is an impulse function satisfying:∫ ∞
−∞

δ(t)f(t)dt = f(0). (34)

Here f(t) is an arbitrary continuous function. Note
that when composed with a continuous function g(t),
δ holds the following property [7]:

δ(g(t)) =
∑
ti∈T

δ(t− ti)
|g′(ti)|

, t ∈ R. (35)

Here T is the set of the real roots of g(t). Similarly,

ψ′(t) = δ(t)− 2δ(t− 1

2
) + δ(t− 1), t ∈ R. (36)

Therefore, for all s ∈ Z, l ∈ Z,

φ′s,l(t) =
d(φ(2st− l))

dt
= 2s[δ(2st− l)− δ(2st− l − 1)]

, t ∈ R. (37)

Similarly, for all s ∈ Z, l ∈ Z,

ψ′s,l(t) = 2s[δ(2st− l)− 2δ(2st− l − 1

2
)

+ δ(2st− l − 1))]

B ∈ R6N .

(38)

Derivatives of Haar Basis Coefficients with Re-
spect to Geometrical Parameters. We first calculate
∂c

(0,0)
s,k

∂xj,i
. According to the generalized functions theory

[7], for all j = 1, 2, . . . , N , i = 1, 2, 3, 4, s = 0, 1, .., d,
kx ∈ Kx and ky ∈ Ky ,

∂c
(0,0)
s,k (B; j)

∂xj,i
=

∫ 1

0

∂

∂xj,i
[2sφ̃s,kx

(Xj(Bx; t))

φs,ky (Yj(By; t))Y ′j (By; t)]dt

B ∈ R6N .

(39)

Since φs,ky (Yj(By; t))Y ′j (By; t) has nothing to do with
the parameter xj,i according to Equation 2, we have

∂c
(0,0)
s,k (B; j)

∂xj,i
=2s

∫ 1

0

∂φ̃s,kx
(Xj(Bx; t))

∂xj,i

φs,ky (Yj(By; t))Y ′j (By; t)dt

=2s
∫ 1

0

φs,kx
(Xj(Bx; t))

∂Xj(Bx; t)

∂xj,i

φs,ky (Yj(By; t))Y ′j (By; t)dt

B ∈ R6N .

(40)

Thus, the derivative of c(0,0)
s,k (B; j) with respect to

any value of xj,i exists . Also, it can be analytically
calculated by substituting Equation 2 and Equation 22
into Equation 40.

Now we turn to
∂c

(0,0)
s,k

∂yj,i
. Similar to Equation 39 and
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40, we have

∂c
(0,0)
s,k (B; j)

∂yj,i
=

∫ 1

0

∂

∂yj,i
[2sφ̃s,kx(Xj(Bx; t))

φs,ky
(Yj(By; t))Y ′j (By; t)]dt

=2s
∫ 1

0

φ̃s,kx(Xj(Bx; t))

∂

∂yj,i

[
φs,ky

(Yj(By; t))Y ′j (By; t)
]
dt

B ∈ R6N ,
(41)

for all j = 1, 2, . . . , N , i = 1, 2, 3, 4, s = 0, 1, .., d, kx ∈
Kx and ky ∈ Ky . Here

∂

∂yj,i

[
φs,ky (Yj(By; t))Y ′j (By; t)

]
=
∂φs,ky

(Yj(By; t))

∂yj,i
Y ′j (By; t) + φs,ky

(Yj(By; t))
∂Y ′j (By; t)

∂yj,i
(42)

According to Equation 35 and 37 we have:

∂φs,ky (Yj(By; t))

∂yj,i
Y ′j (By; t)

=φ′s,k(Yj(By; t))Y ′j (By; t)

=

[
2sδ(2sYj(By; t)− ky)

−2sδ(2sYj(By; t)− ky − 1)

]
Y ′j (By; t)

∂Yj(By; t)

∂yj,i

=
∑
t0∈T0

2sδ(t− t0)

|2sY ′j (By; t0)|
Y ′j (By; t0)

∂Yj(By; t0)

∂yj,i

−
∑
t1∈T1

2sδ(t− t1)

|2sY ′j (By; t1)|
Y ′j (By; t1)

∂Yj(By; t1)

∂yj,i

=
∑
t0∈T0

δ(t− t0)sgn(Y ′j (By; t0))
∂Yj(By; t0)

∂yj,i

−
∑
t1∈T1

δ(t− t1)sgn(Y ′j (By; t1))
∂Yj(By; t1)

∂yj,i
,

B ∈ R6N ,
(43)

for all j = 1, 2, . . . , N , i = 1, 2, 3, 4, s = 0, 1, .., d, and
ky ∈ Ky . Here T0 and T1 are the sets of the real roots
of

g1(t) = 2sYj(By; t)− ky, t ∈ [0, 1] (44)

and

g2(t) = 2sYj(By; t)− ky − 1, t ∈ [0, 1], (45)

respectively. Note that either g1(t) = 0 or g2(t) = 0 is a
cubic equation in one variable (i.e., t). By substituting

Equation 43 into Equation 41, there is

∂c
(0,0)
s,k (B; j)

∂yj,i
=2s[

∑
t0∈T0

∫ 1

0

δ(t− t0)φ̃s,kx
(Xj(Bx; t))

sgn(Y ′j (By; t0))
∂Yj(By; t0)

∂yj,i
dt

−
∑
t1∈T1

∫ 1

1

δ(t− t1)φ̃s,kx
(Xj(Bx; t))

sgn(Y ′j (By; t1))
∂Yj(By; t1)

∂yj,i
dt

+

∫ 1

0

φ̃s,kx(Xj(Bx; t))φs,ky (Yj(By; t))

∂Y ′j (By; t)

∂yj,i
dt]

B ∈ R6N ,
(46)

for all j = 1, 2, . . . , N , i = 1, 2, 3, 4, s = 0, 1, .., d, kx ∈
Kx and ky ∈ Ky . From Equation 34 we have∫ 1

0

δ(t− u)f(t)dt = f(u), u ∈ (0, 1). (47)

Therefore Equation 46 could be written as

∂c
(0,0)
s,k (B; j)

∂yj,i

=2s



∑
t0∈T0

φ̃s,kx
(Xj(Bx; t0))sgn(Y ′j (By; t0))

∂Yj(By; t0)

∂yj,i

−
∑
t1∈T1

φ̃s,kx
(Xj(Bx; t1))sgn(Y ′j (By; t1))

∂Yj(By; t1)

∂yj,i

+

∫ 1

0

φ̃s,kx
(Xj(Bx; t))φs,ky

(Yj(By; t))
∂Y ′j (By; t)

∂yj,i
dt


B ∈ R6N ,

(48)

for all j = 1, 2, . . . , N , i = 1, 2, 3, 4, s = 0, 1, .., d,
kx ∈ Kx and ky ∈ Ky . Therefore the derivative
of c(0,0)

s,k (B; j) with respect to yj,i exists. And it can
be analytically calculated by substituting Equation 2,
Equation 22 and Equation 30 into Equation 48.

Similarly, for all B ∈ R6N , j = 1, 2, . . . , N , i =
1, 2, 3, 4, s = 0, 1, .., d, kx ∈ Kx and ky ∈ Ky , we can
compute the remaining derivatives:

∂c
(0,1)
s,k (B; j)

∂xj,i

=2s



−
∑
t0∈T0

ψ̃s,ky (Yj(By; t0))sgn(X ′j(Bx; t0))
∂Xj(Bx; t0)

∂xj,i

+
∑
t1∈T1

ψ̃s,ky
(Yj(By; t1))sgn(X ′j(Bx; t1))

∂Xj(Bx; t1)

∂xj,i

−
∫ 1

0

ψ̃s,ky (Yj(By; t))φs,kx(Xj(Bx; t))
∂X ′j(Bx; t)

∂xj,i
dt


,

(49)



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

∂c
(0,1)
s,k (B; j)

∂yj,i
= −2s

∫ 1

0

ψs,ky (Yj(By; t))
∂Yj(By; t)

∂yj,i

φs,kx
(Xj(Bx; t))X ′j(Bx; t)dt,

(50)

∂c
(1,0)
s,k (B; j)

∂xj,i
= 2s

∫ 1

0

ψs,kx
(Xj(Bx; t))

∂Xj(Bx; t)

∂xj,i

φs,ky (Yj(By; t))Y ′j (By; t)dt,

(51)

∂c
(1,0)
s,k (B; j)

∂yj,i

=2s



−
∑
t0∈T0

ψ̃s,kx
(Xj(Bx; t0))sgn(Y ′j (By; t0))

∂Yj(By; t0)

∂yj,i

+
∑
t1∈T1

ψ̃s,kx(Xj(Bx; t1))sgn(Y ′j (By; t1))
∂Yj(By; t1)

∂yj,i

−
∫ 1

0

ψ̃s,kx
(Xj(Bx; t))φs,kx

(Yj(By; t))
∂Y ′j (By; t)

∂yj,i
dt


,

(52)

∂c
(1,1)
s,k (B; j)

∂xj,i
= −2s

∫ 1

0

ψs,kx
(Xj(Bx; t))

∂Xj(Bx; t)

∂xj,i

ψs,ky (Yj(By; t))Y ′j (By; t)dt,
(53)

∂c
(1,1)
s,k (B; j)

∂yj,i

=2s



∑
t0∈T0

ψ̃s,kx
(Xj(Bx; t0))sgn(Y ′j (By; t0))

∂Yj(By; t0)

∂yj,i

−2
∑
t1∈T1

ψ̃s,kx(Xj(Bx; t1))sgn(Y ′j (By; t1))
∂Yj(By; t1)

∂yj,i

+
∑
t2∈T2

ψ̃s,kx
(Xj(Bx; t2))sgn(Y ′j (By; t2))

∂Yj(By; t2)

∂yj,i

+

∫ 1

0

ψ̃s,kx(Xj(Bx; t))ψs,kx(Yj(By; t))
∂Y ′j (By; t)

∂yj,i
dt


,

(54)

Note that all these derivatives of Haar basis coef-
ficients with respect to each geometrical parameter
exist, and can be calculated analytically. Therefore,
derivatives of the rasterization function RMS(W ;x, y)
with respect to the ge ometrical parameters could
be also analytically calculated by substituting Equa-
tion 40,48-54 into Equation 31 and Equation 32 respec-
tively.

Since there exist analytic derivatives for
RMS(W ;x, y) with respect to each geometrical
parameter, the differentiability of RMS(W ;x, y) is
proved, which verifies Theorem 2 in Section 4.
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