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Abstract. In this paper, we propose a deep reinforcement learning algo-
rithm for active learning on medical image data. Although deep learning
has achieved great success on medical image processing, it relies on a
large number of labeled data for training, which is expensive and time-
consuming. Active learning, which follows a strategy to select and anno-
tate informative samples, is an effective approach to alleviate this issue.
However, most existing methods of active learning adopt a hand-design
strategy, which cannot handle the dynamic procedure of classifier train-
ing. To address this issue, we model the procedure of active learning as
a Markov decision process, and propose a deep reinforcement learning
algorithm to learn a dynamic policy for active learning. To achieve this,
we employ the actor-critic approach, and apply the deep deterministic
policy gradient algorithm to train the model. We conduct experiments on
two kinds of medical image data sets, and the results demonstrate that
our method is able to learn better strategy compared with the existing
hand-design ones.

Keywords: Active learning · Deep reinforcement learning · Medical
image classification.

1 Introduction

In the last decades, benefiting from the powerful ability of representation learn-
ing, deep learning has achieved great success on object recognition, natural image
understanding, and medical image analysis [7,13]. Nevertheless, existing meth-
ods heavily rely on a large of high-quality labeled data, which is expensive and

J. Wang and Y. Yan—are the co-first authors. Y. Zhang—is the corresponding author.
This work was supported by HKRGC GRF 12306616, 12200317, 12300218, 12300519,
and 17201020.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59710-8 4) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
A. L. Martel et al. (Eds.): MICCAI 2020, LNCS 12261, pp. 33–42, 2020.
https://doi.org/10.1007/978-3-030-59710-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59710-8_4&domain=pdf
https://doi.org/10.1007/978-3-030-59710-8_4
https://doi.org/10.1007/978-3-030-59710-8_4
https://doi.org/10.1007/978-3-030-59710-8_4


34 J. Wang et al.

time-consuming. This issue becomes even severer in medical image analysis, since
it requires experienced experts to annotate medical images.

Active learning is an effective approach to address the problem of labeled
data scarcity [11,16]. In the iterative procedure of active learning, some infor-
mative unlabeled samples are selected and annotated. After that, the classifier is
trained with the help of new labeled data and is expected to achieve better per-
formance than before. Most existing methods of active learning prefer to select
and annotate samples with high uncertainty, since these samples can provide
more information and are usually difficult to be classified correctly. Motivated
by this, some methods based on uncertainty are proposed, such as least confi-
dence [11], margin sampling [10], entropy [12], etc. However, these methods rely
on fixed hand-design strategies, which are not able to handle the dynamic pro-
cedure of model training. As the model changes, the predefined strategy may be
inappropriate to select the most informative samples.

In this paper, to address the above issue, we propose a new active learning
algorithm named Deep Reinforcement Learning for Active learning (DRLA) for
medical image classification. Rather than adopting a hand-design data selection
strategy, we seek to learn a dynamic policy to select samples for annotation.
To this end, we model the procedure of active learning as a Markov decision
process, and apply deep reinforcement learning [8,14] to learn a data selection
strategy, which takes the state of the classifier into consideration, thus can obtain
a better strategy compared with hand-design ones. Specifically, we employ the
actor-critic approach [3] to generate and judge decisions of data selection, and
apply the deep deterministic policy gradient algorithm (DDPG) [6] to train the
model. We conduct experiments on two kinds of medical image data sets to
evaluate the performance of our proposed method.

1.1 Related Works

Active learning aims to select and annotate informative samples for improv-
ing the performance [4,11,16]. The most common strategy is based on data
uncertainty. In [11], the least confidence method is proposed to select the sam-
ples whose probabilities of the most probable classes are still low. The margin
sampling method [10] calculates the margin between the first and second most
probable classes for each sample, and selects the samples with small margin val-
ues. The entropy method measures the uncertainty of each sample based on the
entropy of the predicted class label probabilities [12]. In [17], a fusion strategy is
proposed to combine the above methods. In [19], a deep active learning method
based on uncertainty and similarity information is proposed for biomedical image
segmentation.

Reinforcement learning is a classic algorithm in artificial intelligence [14].
Thanks to the great progress of deep neural network, deep reinforcement learn-
ing has shown powerful ability in learning policy for decision problems. Deep
Q-learning extends traditional Q-learning by leveraging deep neural network to
learn a Q-value function [8]. After that, deep deterministic policy gradient algo-
rithm (DDPG) is proposed to adapt deep Q-learning to handle the continuous
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action space [6]. In [2], the Twin Delayed Deep Deterministic policy gradient
algorithm (TD3) further extends DDPG by maintaining a pair of critics along
with a single actor, which obtains better performance and efficiency.

2 Methodology

2.1 Overview

Figure 1 illustrates the main idea of our proposed method DRLA. A classifier
network for disease diagnosis is trained on labeled training data, including sam-
ples with label in advance (i.e., (Xl, Yl)), and samples which are selected and
annotated in the procedure of active learning. During the learning process, an
actor network is devoted to selecting the most informative samples from unla-
beled training data (i.e., Xu) according to the current state and a learned policy.
After that, an annotator is responsible to annotate the selected samples. As a
result, we have more and more labeled training data to update the classifier
gradually. Last but not the least, a critic network is trained to evaluate if the
selection of the actor network is effective to improve the performance of the clas-
sifier. By employing a deep reinforcement learning approach to train the actor
network and the critic network, we can select and annotate the most informative
samples that are beneficial for training an effective classifier, and further improve
the classification performance.

Fig. 1. The illustration of our proposed method DRLA.

2.2 Classifier Training

Let the parameters of the classifier network be θd. At the beginning of the
learning procedure, we can use labeled training data to pretrain the classifier.
After that, we apply deep reinforcement active learning to select and annotate
samples, and further train the classifier to enhance the performance. Given the



36 J. Wang et al.

labeled training samples Xl = {xi}nl
i=1 with corresponding labels Yl = {yi}nl

i=1,
where nl is the number of labeled data. The classifier network is trained by
minimizing the cross-entropy loss, which is defined as

Lce = −
nl∑

i=1

M∑

j=1

I(yi = j) log Pr(yi = j | xi; θd), (1)

where M is the number of classes, I(·) is the indicator function, and I(yi = j)
judge if the label of the i-th sample is j or not. Pr(yi = j | xi; θd) is the softmax
output of the classifier given xi for the j-th class, which indicates the probability
of xi belonging to label j obtained from the classifier with parameters θd.

2.3 Deep Reinforcement Active Learning

In this part, we propose a new active learning method named DRLA to learn a
policy, which guides the actor network to select samples for annotation. In the
following, we discuss our proposed method in detail.

State. In order to select the samples which are the beneficial for improving
the classification performance, the prediction of the current classifier should be
taken into consideration. Motivated by this, we design the state S ∈ (0, 1]nu×M

as a matrix including all the predicted values for unlabeled training samples Xu,
where nu is the number of unlabeled training samples, and M is the number of
the classes. Mathematically, the (i, j)-th element of S is defined as

Sij = Pr(yui = j | xu
i ; θd), (2)

where xu
i is an unlabeled training sample, and yui is the corresponding unknown

label.

Action. Define θa is the parameters of the actor network. Since the target
of the actor network is to select samples from unlabeled training data set for
annotation, we define the action as a vector a ∈ (0, 1)nu , each element of which
corresponds to an unlabeled training sample. The sigmoid function is adopted
as the activation function for each element to obtain a value between 0 and
1. A policy π(S; θa) is learned to generate action a based on the state S. After
obtaining the action vector, we rank all the candidate samples except the samples
which are selected already in descending order, and select the first ns samples
with the highest values for annotation. The selected samples and the labels
provided by the annotator are denoted as {(xs

i , y
s
i )}

ns
i=1, and the augmented

labeled training data are denoted as (Xl, Yl) := (Xl, Yl) ∪ {(xs
i , y

s
i )}

ns
i=1.

State Transition. After the selected samples are annotated and added into the
labeled training data, we can update the classifier with the augmented training
data set (Xl, Yl) by minimizing the cross-entropy loss in Eq. (1). After that, we
can use the new classifier to obtain the new state matrix S′ based on Eq. (2).

Reward. In order to enhance the performance of the classifier, we propose to
make the actor concentrate more on those samples which are highly possible
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to be misclassified by the classifier. To achieve this, we design a novel reward
function by considering the predicted values and true labels obtained from the
annotator. In specific, for the selected sample xs

i , define ki as the true label
obtained from the annotator, and k̂i as the predicted label obtained from the
classifier, i.e., k̂i = maxj Pr(ysi = j | xs

i ; θd). The reward is defined as

r(S, a) =
1
ns

ns∑

i=1

Pr(ysi = k̂i | xs
i ; θd) − Pr(ysi = ki | xs

i ; θd). (3)

If the sample xs
i is classified correctly, then ki = k̂i, and Pr(ysi = k̂i | xs

i ; θd) −
Pr(ysi = ki | xs

i ; θd) = 0. On the other hand, a high reward indicates that the
selected samples are classified incorrectly. This implies that these samples with
the wrong predictions should be paid more attention by the classifier. Therefore,
these samples are encouraged to be selected by the actor network.

At state S, reinforcement learning aims to maximize the expected reward
in the future, which is defined as a Q-value function. Similar to Q-learning
in traditional reinforcement learning, the Q-value function is used to evalu-
ate the state-action pair (S, a), and is represented by the Bellman equation as
Q(S, a; θc) = E

[
γQ(S′,π(S′; θa); θc) + r(S, a)

]
, where γ is the delay parameter.

Here we adopt a critic network with parameters θc to approximate the Q-value
function. Inspired by deep Q-Learning [8], we aim to learn a greedy policy for
the actor by solving the following problem

max
θa

Q(S,π(S; θa); θc). (4)

We define Q̃(S, a; θc) = γQ(S′,π(S′; θa); θc)+r(S, a), and train the critic network
by solving the following problem

min
θc

(
Q̃(S, a; θc) − Q(S, a; θc)

)2
. (5)

Training with Target Networks. In order to stabilize the training of the
actor and critic networks, we follow [6] to employ a separate target network
to calculate Q̃(S, a; θc). According to Problem (5), Q̃(S, a; θc) depends on the
new state S′, the actor to output action π(S′; θa), and the critic to evaluate
(S′,π(S′, θa)). We adopt a separate target actor network parameterized by θa′

and a separate target critic network parameterized by θc′ to calculate Q̃(S, a; θc).
As a result, we rewrite Eq. (5) as

min
θc

(
γQ′(S′,π′(S′; θa′); θc′) + r(S, a) − Q(S, a; θc)

)2
, (6)

where π′(·; θa′) is the target policy estimated by the target actor, and Q′(·, ·; θc′)
is the function of the target critic. This problem can be optimized by the deep
deterministic policy gradient algorithm (DDPG) [6].

At the last of each epoch, the target actor and critic are updated by

θa′ := λθa + (1 − λ)θa′ , θc′ := λθc + (1 − λ)θc′ , (7)



38 J. Wang et al.

where λ ∈ (0, 1) is a trade-off parameter.
To train the actor and critic in the mini-batch paradigm, we use a replay

buffer to store samples {(S, a, S′, r)}. As a result, we can uniformly select training
samples from the replay buffer to update the actor and critic networks [6].

Algorithm 1 summarizes our proposed method.

Algorithm 1. Deep Reinforcement Learning for Active learning (DRLA)
Input: Labeled training data (Xl, Yl), unlabeled training data Xu.
Initialize: Pretrain the classifier to get f(·; θd) based on labeled training data (Xl, Yl).
1: for each epoch do
2: Compute the state S according to Eq. (2).
3: Select ns unlabeled training sample {xs

i }
ns
i=1 based on the actor a = π(S; θa).

4: Annotate {xs
i }

ns
i=1 to get {(xs

i , y
s
i )}

ns
i=1.

5: Update the classifier parameters θd using (Xl, Yl) := (Xl, Yl) ∪ {(xs
i , y

s
i )}

ns
i=1.

6: Calculate the state S′ based on Eq. (2), and the reward r based on Eq. (3).
7: Save the sample (S, a, S′, r) into the replay buffer.
8: for each training sample for actor and critic do
9: Update the critic by optimizing Problem (6).
10: Update the actor by optimizing Problem (4).
11: Update the target actor and critic according to Eq. (7).
12: end for
13: end for

3 Experiments

3.1 Data Sets and Evaluation Metrics

– chestCT1 is a Computed Tomography (CT) data set for lung disease detec-
tion with four kinds of diseases, including pulmonary nodule, pulmonary cord,
arteriosclerosis and calcification of lymph node. It contains 1,470 CT scans.
We randomly pick up scans from them to construct training and testing data
sets. After that, we take the regions with the ground-truth label to obtain
samples, and then randomly pick up 3,500 samples as training samples and
3,500 samples as testing samples.

– The Retinopathy data set2 contains 35,126 fundus images collected by dif-
ferent devices from different environments. Each fundus image is rated from
0 to 4 according to the presence and degree of diabetic retinopathy (DR),
i.e., no DR, mild, moderate, severe, and proliferative DR. We randomly pick
up 2,230 images as training data and 2,230 images as testing data.

1 https://tianchi.aliyun.com/competition/entrance/231724/introduction.
2 https://www.kaggle.com/c/diabetic-retinopathy-detection/.

https://tianchi.aliyun.com/competition/entrance/231724/introduction
https://www.kaggle.com/c/diabetic-retinopathy-detection/
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We adopt two performance metrics, i.e., Macro F1 and Micro F1 scores, for
evaluation. Taking the j-th class as the positive label while the other classes
as the negative label, we can define TPj , TNj , FPj and FNj as the numbers
of true positive, true negative, false positive and false negative, respectively.
The two evaluation metrics are defined as Macro F1 = 1

M

∑M
j=1

2·TPj

2·TPj+FNj+FPj
,

Micro F1 = 2·
∑M

j=1 TPj

2·
∑M

j=1 TPj+
∑M

j=1 FNj+
∑M

j=1 FPj
.

3.2 Experimental Settings

In the experiments, we compare our method with several active learning meth-
ods, including random selection (RANDOM), least confidence (LC) [11], margin
sampling (MS) [10], entropy (EN) [12], and FUSION [17]. The FUSION method
combines the three above mentioned criteria, i.e., LC, MS and EN. In specific,
FUSION selects top K

2 samples according to LC, MS and EN, respectively. After
that, FUSION removes the replicate ones from the 3K

2 samples, and randomly
selects K samples from them to annotate. We also conduct a method named
“ALL”, which takes all the training data as labeled ones to train the model.

For the chestCT data set, we randomly select 5% samples of each class from
the training set to initialize the network, and the rest are for the incremental
learning process. In each epoch, we randomly select 5 samples from the unlabeled
training set to annotate, and then add them into the labeled training data to
update the classifier.

For the Retinopathy data set, we randomly select 10% images of each class
from the training set to initialize the network, and the rest are for the incremental
learning process. In each epoch, we randomly select 1 sample from the unlabeled
training set to annotate, and then add them into the labeled training data to
update the classifier.

All the methods are implemented on the PyTorch platform [9]. We use
ResNet-50 [5] with 3D convolutional layers [15] as the architecture for chestCT,
and ResNet-50 pretrained on ImageNet data set [1] to initialize the classifier for
the Retinopathy data set. We adopt the SGD optimizer with the learning rate
0.0001 to train the classifier network. The actor network and the critic network
have the same architecture, which consists of three fully connected layers. Both
of them are trained using the Adam optimizer with the learning rate 0.001. We
set the delay factor as γ = 0.99, the trade-off parameter as λ = 0.005, and
the batch size as 16. For the DDPG algorithm, we adopt the noise exploration
mechanism used in [18].
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3.3 Results and Discussion

Tables 1 and 2 present the results on chestCT. Our proposed method DRLA out-
performs the compared active learning methods. This demonstrates that com-
pared with the hand-design strategies used in the compared methods, DRLA is
able to learn a more effective strategy to select informative samples for improving
the performance. Besides, to achieve 0.70 F1 scores, DRLA only needs around
40% labeled training data, while the other active learning method require around
68% labeled training data. This indicates that DRLA can reduce the need of
labeled data.

Table 1. Macro F1 results on the chestCT data set.

Percentage of training
samples

26% 40% 54% 68% 82% 100%

ALL – – – – – 0.7494

RANDOM 0.6530 0.6994 0.7014 0.7101 0.7125 0.7176

LC 0.6813 0.7193 0.7235 0.7383 0.7396 0.7389

MS 0.6431 0.6902 0.7007 0.7173 0.7182 0.7207

EN 0.6730 0.7194 0.7287 0.7353 0.7330 0.7348

FUSION 0.6733 0.6845 0.7112 0.7198 0.7190 0.7192

DRLA 0.6869 0.7362 0.7419 0.7451 0.7481 0.7525

Table 2. Micro F1 results on the chestCT data set.

Percentage of training
samples

26% 40% 54% 68% 82% 100%

ALL – – – – – 0.7462

RANDOM 0.6574 0.7023 0.7029 0.7109 0.7131 0.7180

LC 0.6829 0.7197 0.7231 0.7363 0.7369 0.7363

MS 0.6449 0.6926 0.7011 0.7143 0.7169 0.7180

EN 0.6857 0.7200 0.7280 0.7329 0.7311 0.7343

FUSION 0.6914 0.6891 0.7137 0.7197 0.7191 0.7203

DRLA 0.6940 0.7343 0.7409 0.7451 0.7480 0.7537

Figure 2 shows the results of learning procedures on the two data sets, respec-
tively. We observe that as the number of labeled training data increases, all the
active learning methods can obtain better performance. Besides, after receiving
20% labeled training data, our proposed method DRLA consistently achieves the
best or highly comparable performance compared with the other active learning
methods. This further verifies that DRLA is able to select informative samples
to improve the classification performance.

More experimental results could be found in Supplementary Material.
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(a) Macro F1 score on the Retinopathy
data set.
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(b) Micro F1 score on the Retinopathy
data set.
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(c) Macro F1 score on chestCT.

20% 40% 60% 80% 100%
 Percentage of training data

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 M
ic

ro
 F

1

ALL
RANDOM
LC
MS
EN
FUSION
DRLA

(d) Micro F1 score on chestCT.

Fig. 2. Macro F1 and micro F1 results on the data sets.

4 Conclusion

In this paper, we propose a deep reinforcement active learning algorithm for
medical image classification. To learn a dynamic strategy for active learning,
we apply deep reinforcement learning to learn a policy to select samples for
annotation, and employ deep deterministic policy gradient algorithm under the
actor-critic paradigm to train the model. We conduct experiments on two medical
image data sets to demonstrate the effectiveness of the proposed method.
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