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Deep View Synthesis via Self-Consistent
Generative Network

Zhuoman Liu∗, Wei Jia∗, Ming Yang, Peiyao Luo, Yong Guo, and Mingkui Tan†

Abstract—View synthesis aims to produce unseen views from
a set of views captured by two or more cameras at different
positions. This task is non-trivial since it is hard to conduct
pixel-level matching among different views. To address this issue,
most existing methods seek to exploit the geometric information
to match pixels. However, when the distinct cameras have a
large baseline (i.e., far away from each other), severe geometry
distortion issues would occur and the geometric information
may fail to provide useful guidance, resulting in very blurry
synthesized images. To address the above issues, in this paper,
we propose a novel deep generative model, called Self-Consistent
Generative Network (SCGN), which synthesizes novel views from
the given input views without explicitly exploiting the geometric
information. The proposed SCGN model consists of two main
components, i.e., a View Synthesis Network (VSN) and a View
Decomposition Network (VDN), both employing an Encoder-
Decoder structure. Here, the VDN seeks to reconstruct input
views from the synthesized novel view to preserve the consistency
of view synthesis. Thanks to VDN, SCGN is able to synthesize
novel views without using any geometric rectification before
encoding, making it easier for both training and applications. Fi-
nally, adversarial loss is introduced to improve the photo-realism
of novel views. Both qualitative and quantitative comparisons
against several state-of-the-art methods on two benchmark tasks
demonstrated the superiority of our approach.

Index Terms—View synthesis, self-consistency, large baseline,
generative model.

I. INTRODUCTION

V IEW synthesis generates a novel (absent) camera view
image from known camera views of the same scene, as

shown in Fig. 1. It can be widely applied in video conferenc-
ing [1], virtual reality [2], and free-viewpoint TV [3], etc. In
this paper, we focus on synthesizing a middle view from two
different views in real industrial scenarios where the ideal view
is hard to obtain due to hardware limitations. For example, in
some video conferencing equipment, cameras are positioned
symmetrically on each side of the screen with a large baseline
(i.e., the distance between two camera views [4]). Moreover,
the baseline between the two cameras is often pre-defined for
specific products.
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Fig. 1. A view synthesis example: middle view (frontal) synthesis from the
left and right views with a large baseline (namely, a large distance between
two camera views) on the Multi-PIE [16] dataset. The left and right views
are captured by two distinct cameras and then used to synthesize the missing
middle view. This task can be applied in a real industrial scenario — a real-
time video conferencing system developed by the company with which the
authors are working.

The view synthesis task, however, is extremely difficult due
to the following challenges: 1) The large distance between
two camera views may lead to huge occlusion. The model
is hard to synthesize the novel views given limited informa-
tion. 2) View synthesis is an ill-posed problem. Specifically,
there exists an infinite number of middle/novel views that
correspond to the same input views [5]. Thus, the space
of the possible view synthesis functions can be extremely
large, making it hard to find a good solution. Several recent
works [6], [7], [8] attempt to solve the view synthesis problem
by warping with a depth camera. However, depth images
are difficult to obtain due to the limitation of the hardware.
Therefore, some geometry-based view synthesis methods [9],
[10], [11], [12], [13], [4] are proposed to synthesize novel
views without the depth image. Such approaches add geometry
constraints to preserve consistency between input views and
the synthesized view. However, when the input views have
huge occlusion, these geometry-based methods may learn
mismatching corresponding map between the input views,
or even fail to learn the correspondences. To overcome the
drawbacks of geometry-based methods, some image-content-
based methods [14], [9], [15] formulate the view synthesis
task as a mapping from input views to the target view without
geometry constraints. Despite these attempts, the space of
the possible view synthesis functions is still extremely large,
which makes it difficult to learn a good model.

To address the above issues, we propose a new view
synthesis method, called Self-Consistent Generative Network
(SCGN), to simultaneously produce photo-realistic novel
views and preserve consistency among different views of the
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same scene. Specifically, to address the challenge brought
by the large baseline between cameras, we propose View
Synthesis Network (VSN) model that directly learns the map-
ping from the input side views to the resultant novel/middle
view. To reduce the space of possible mapping functions, we
design a self-consistency scheme that introduces an additional
constraint by decomposing the synthesized novel view back
into the original input side views, and propose a View Decom-
position Network (VDN) to learn the decomposition mapping.
To further improve the photo-realism of the synthesized view,
we incorporate an adversarial loss and an image sharpness loss
into the training objective to train the proposed model. Unlike
cycle-consistency [17] that helps minimize the distribution
divergence, our self-consistency builds a cycle to improve the
pixel-wise prediction. With the self-consistency constraint, we
are able to effectively reduce the space of possible mapping
functions and thus obtain promising views synthesis perfor-
mance. Extensive experiments on an indoor dataset and an
outdoor dataset demonstrate the superiority of the proposed
method over existing methods.

Our main contributions are summarized as follows.
• We propose a novel deep View Synthesis Network, called

Self-consistent Generative Network (SCGN), which si-
multaneously synthesizes photo-realistic unseen views
and preserves high consistency among different views of
the same scene.

• We propose a View Decomposition Network (VDN) that
reconstructs the input views from the synthesized view. In
this way, different views are highly correlated with each
other and the geometric pre-processing (e.g., rectification)
in existing methods becomes not necessary.

• Comprehensive experiments demonstrate the superior
performance of the proposed method over existing meth-
ods both quantitatively and qualitatively. In particular, the
proposed method is able to produce visually promising
middle views on both the benchmark datasets and the
real-world conferencing system1.

II. RELATED WORK

Multi-view synthesis. Synthesizing a novel view from mul-
tiple view images has long been studied. Debevec et al. [18]
combines both image-based and geometry-based techniques to
render novel views from multiple views. Sagonas et al. [19]
considers frontal facial image synthesizing as an optimization
problem. Traditional methods fail in occlusion situations and
may generate artifacts in synthesized views. Thus, some ap-
proaches that combine different learning methods are proposed
to tackle such bottlenecks.

Learning-based approaches tackle multi-view synthesis task
via training a prediction model, e.g., Convolutional Neural
Networks (CNNs) [14], [10], [20], [21]. Dosovitskiy et al.
[14] trains CNN to render images of chairs with different
poses, lighting, etc. DeepStereo [21] synthesizes a novel view
by interpolating from neighboring posed views of a scene.
However, it is difficult to composite occluding content under

1The collected dataset of the real-world conferencing is available at
https://zhuomanliu.github.io/datasets/download.html.

large baselines. Similarly, Multi2Novel [13] and StereoMagni-
fication [4] use multi-plane or multi-view to construct a plane-
sweep volume. They have the same problem as DeepStereo.
Considering the correlation among different views, Zhou et al.
[10] proposes View Synthesis by Appearance Flow (VSAF)
to synthesize new images of the same object from arbitrary
viewpoints. However, VSAF requires viewpoint transforma-
tion information (in addition to the input images) and may lead
to incorrect content due to occlusion. Park et al. [22] and Ji et
al. [12] seek to improve VSAF by addressing these problems.
Disocclusion-aware Appearance Flow Network (DOAFN) [22]
is proposed to predict not only a novel view but also a visi-
bility map to improve performance. Multi-Scale Adversarial
Correlation Matching (MS-ACM) [23] models structures as
self-correlation coefficients extracted from multi-scale feature
maps. Unfortunately, both DOAFN and MS-ACM are not
suitable for the multi-view synthesis task studied in this paper
due to the limitation of a single view input. To render a novel
view, View Independent Generative Adversarial Network (VI-
GAN) [24] and Extreme View Synthesis [25] input additional
camera pose, which is not required in our multi-view synthesis
task. DVM [12] aims to synthesize novel views from multiple
views without additional information beyond input image
pairs. Our model outperforms DVM when dealing with a large
baseline image pair.
Generative adversarial networks (GANs). Recently, many
GANs [26], [27], [28] have been proposed to generate im-
ages, such as DCGANs [29], WGANs [30], and progressive
GANs [31]. Inspired by GANs, Huang et al. [5] proposed
a Two-Pathway Generative Adversarial Network (TP-GAN)
to synthesize a facial view image from one side view while
preserving the symmetric structure of faces. However, TP-
GAN ignores data consistency and may result in meaningless
images. Regarding this issue, Zhu et al. proposed cycle-
consistency loss to preserve the content in image translation
by enforcing double-sided consistency during training [17],
[32]. Better than Pix2Pix [33], the double forward-backward
processes qualify it for unsupervised tasks. However, unlike
image translation, the multi-view synthesis task is often a
supervised task in which we should exactly recover a novel
view from two or more view images (or videos) obtained
by cameras at distinct positions with more strict constraints.
Focusing on addressing the multi-view synthesis task, in this
paper, we use self-consistency (one cycle mapping from the
synthesized view to side views) to ensure the input views
(which may contain occluded contents) can be reconstructed.

III. SELF-CONSISTENT GENERATIVE NETWORK

With the goal of addressing the challenges in the view syn-
thesis task, i.e., synthesizing novel views under large baselines
with more occluded areas in paired views, and avoiding the
limitations of geometric modules under large baselines, we
propose self-consistency in our model.

Without loss of generality, we introduce our method by
focusing on synthesizing the absent frontal view from two
stereo views, as shown in Fig. 1. Given a set of stereo
view triplets {(I li , Iri , Igti )}ni=1, we seek to learn a mapping
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Fig. 2. General structure of Self-Consistent Generative Network (SCGN) for the task of frontal view synthesis. Here, camera C0 is the reference camera
that produces the ground-truth view image Igt. Moreover, the connected pairs of cameras capture symmetrical views with different baselines, where bS , bM
and bL are view pairs with small, medium, and large baselines, respectively. SCGN seeks to recover the middle view from a given side view pair (Il, Ir).
SCGN consists of two major components, namely the encoder-decoder-based generator {GE , GD}, and the view decomposition network which enforces
consistency between input views and recovered views. More network details can be found in Section III-D.

G : (I l, Ir)→ Igt to recover the ground-truth view Igt from
a given input view pair (I l, Ir). This task is non-trivial due
to the view correspondence issue of distinct views.

In this paper, we present a novel view synthesis method,
called Self-Consistent Generative Network (SCGN). As shown
in Fig. 2, our proposed method consists of two parts, namely
a View Synthesis Network (VSN) for generating a frontal view
from two stereo views, and a View Decomposition Network
(VDN) for attempting to reconstruct two input stereo views
from the synthesized frontal view. Here, VDN helps to address
the occlusion problem caused by a large baseline. Furthermore,
to ensure the photo-realism of the synthesized views, we
further introduce a GAN based loss to train the model rather
than the simple pixel-wise loss. The details of each part will
be described in the following sections.

A. View Synthesis Network
As shown in the purple dotted block of Fig. 2, we employ

an encoder-decoder network to implement the view synthesis
network G, consisting of an encoder GE and a decoder GD.
Both the encoder and the decoder networks are composed of a
stack of residual blocks [34], allowing for faster convergence
and better performance. To improve the representation ability
of the embedding, in the encoder, we replace the last three
convolutional layers with dilated convolution [35], [36] to
increase the receptive field of the filters without increasing
the number of weights.

Given the left and right views I l and Ir, the synthesized
view, denoted by Is, can be computed by

Is = GD
(
GE(I l, Ir)

)
, (1)

where GE(I l, Ir) denotes feature extraction from I l and Ir

using a weight-shared encoder. Specifically, we first use the

encoder model to extract features from I l and Ir indepen-
dently. Then, we concatenate the features of I l and Ir as the
output of GE(I l, Ir).
Reconstruction loss. To exactly recover the frontal view
image, it is straightforward to use a pixel-wise loss to minimize
the distance between the synthesized view Is and the ground-
truth Igt on pixel level:

Lp(θG) =
1

n

n∑

i=1

‖Isi − Igti ‖1, (2)

where n denotes the number of images, ‖·‖1 denotes `1-norm.
Sharpness loss. To improve the quality of the synthesized
images, we integrate an image sharpness method into the
loss function. First, to measure the sharpness of images,
we exploit the sharpness criterion QS in LOGS [37] by
computing the differences of the textural complexity between
the synthesized image and its reblurred version obtained by
a Gaussian smoothing filter. The textural complexity can be
represented by the standard deviations of the pixels in the
image. Following [37], we compute QS in a block-wise
manner:

QS(I) =

∑i=Z
i=1

√
|σ2

1i − σ2
2i|

Z
, (3)

where σ2
1i and σ2

2i represent the standard deviations of the
i-th block in the image and its blurred version. Here, Z =
bMk c·bNk c denotes the total number of blocks, where k denotes
the block size, M and N denote the height and width of the
image I , respectively. Then, we construct the sharpness loss
Lsharp based on QS :

Lsharp =
1

n

n∑

i=1

‖QS(Igti )−QS(Isi )‖1, (4)
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Algorithm 1 Training algorithm for SCGN

Require: Training stereo view triplets {I li , Iri , Igti }ni=1; batch
size m; number of training iterations T ; learning rate α.

1: for t = 1, ..., T do
2: Sample a mini-batch of views {I li , Iri , Igti }mi=1.
3: Synthesize the frontal view Isi using Eq. (1).
4: Synthesize view pair (Î li , Î

r
i ) from Isi using Eq. (9).

5: Update discriminator parameters θD using Eq. (11).
6: Update VSN parameters θG using Eq. (13).
7: Update VDN parameters θV using Eq. (14).
8: end for

where Is denotes the synthesized view and Igt denotes the
ground-truth view.
Adversarial loss. To improve the photo-realism of the synthe-
sized views, we propose to train the network in an adversarial
manner. Specifically, VSN can be regarded as a generator G
for synthesizing a frontal view Is that is as photo-realistic as
the real one Igt. To enable VSN to synthesize a good-quality
frontal view, we also introduce discriminator D to distinguish
the generated frontal view from a real frontal view.

Let θG and θD be the model parameters of the generator
G and the discriminator D, respectively. Following [26], the
adversarial network can be trained by solving the following
minimax problem:

min
θG

max
θD

Lgen(θG, θD), (5)

with Lgen(θG, θD) being

Lgen(θG, θD) = EIgt∼PIgt
[logD(Igt)]

+ EIs∼PIs
[log(1−D(Is))],

(6)

where PIgt and PIs are the distributions of the ground-truth
and synthesized image, respectively.

In the training, the discriminator D can be learned by
minimizing the following loss:

Ldisc(θD) = −
1

n

n∑

i=1

logD(Igti )− log(1−D(Isi )), (7)

where D (Is) is the probability that a synthesized image is a
real frontal view. For better gradient behavior, we minimize
− logD (Is) instead of log (1−D (Is)) [26]. For the gener-
ator G, we can define the adversarial loss as follows:

Ladv(θG) = −
1

n

n∑

i=1

logD
(
GD

(
GE(I li , I

r
i )
))
. (8)

During training, the adversarial loss will be combined with
other losses to update the parameters θG of generator G.

B. View Decomposition Network

For the ill-posed problem that there exists an infinite number
of middle/novel views that correspond to the same input
views [5], we propose a self-consistency scheme to reduce the
space of possible view synthesis functions. Specifically, we
propose a View Decomposition Network (VDN) that recon-
structs the input side views from the predicted middle/novel
view, as shown in the blue block of Fig. 2.

The VDN consists of an encoder V E and two separate
decoders V D for the two side views. Specifically, VDN intro-
duces a decomposition mechanism to decompose the generated
frontal image Is from VSN backward into (Î l, Îr), i.e.,

Î l = V D,l(V E(Is)) and Îr = V D,r(V E(Is)). (9)

In addition, by regenerating the side views, VDN here can
ensure the validity of the generated occluded area. This is the
reason why the VSN in our model does not need to contain
a rectification module or any transformation operations. In
combination with the forward generation network (i.e., VSN)
that learns the translation from (I l, Ir) to Is, VDN can
backtrack to the original source and enforce forward-backward
constraints on input view pairs. The predicted left and right
views (Î l, Îr) should be close to the real left and right input
(I l, Ir). We, therefore, minimize the distance between (Î l, Îr)
and (I l, Ir) through Lvc:

Lvc(θG, θV ) =
1

n

n∑

i=1

‖Î li − I li‖1 + ‖Îri − Iri ‖1. (10)

Noted that the proposed self-consistency has several dif-
ference with cycle-consistency [17]. Firstly, cycle-consistency
uses cycles to help minimize distribution divergence without
ground truth while our self-consistency builds a cycle to
improve the pixel-wise prediction together with reconstruc-
tion loss. Secondly, cycle-consistency learns two symmetric
mappings between the images in two domains while our self-
consistency learns two asymmetric mappings, i.e., a synthesis
mapping and a decomposition mapping. In practice, the pro-
posed self-consistency scheme is able to significantly improve
the performance by incorporating the constraint w.r.t. the
decomposition mapping (See Table IV, Table V, and Table VI
in the paper).

C. Training Details

To train SCGN, we need to update the parameters θG for
VSN, θV for VDN and θD for discriminator D. Following
GANs [26], we adopt an alternating optimization scheme
to train SCGN using mini-batch stochastic gradient descent
(SGD), as shown in Algorithm 1. Let α be the learning rate
for SGD. In each iteration, for discriminator D, we update θD
by minimizing the loss Ldisc according to

θD = θD − α∇θDLdisc. (11)

For VSN, we should update θG by minimizing the following
loss function:

LG(θG)=Lp + λ1Lvc + λ2Ladv + λ3Lsharp, (12)

where λ1, λ2, and λ3 are balancing parameters. Specifically,
we consider the loss function with the Lsharp term as a variant
of the loss function without the Lsharp. We further discuss this
variant in Section V-D. Thus, the update can be made by

θG = θG − α∇θGLG. (13)

Last, for VDN, we update θV by minimizing the loss Lvc
according to

θV = θV − α∇θV Lvc. (14)
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D. Details of the Network Structure

1) View synthesis network: We build the view synthesis net-
work G following the scheme of an encoder-decoder network.
The details are shown in Table I.
Encoder. The weight-shared encoder GE takes the left and
right views as inputs respectively. For the encoder GE , each
convolutional layer is followed by a leaky rectified linear unit
(leaky ReLU). To better leverage spatial information and large
distance information, dilated convolution is also employed
in the encoder. Then, the encoded features of the left and
right views {ec6 l, ec6 r} are concatenated along the channel
dimension and taken as the inputs of the decoder GD. We also
introduce residual blocks to our model. Specifically, each max-
pooling layer is followed by one residual block and the final
layer of the encoder (i.e., ec6) is followed by four residual
blocks.
Decoder. For the decoder GD, we adopt ReLU as the non-
linear activation function after each convolutional layer ex-
cept for the final convolution layer dc5. In layer dc5, tanh
is adopted to keep the output within the normalized data
range. We obtain {ecfeatk l, ecfeatk r} (k ∈ {1, 2, 3}) by
applying 1× 1 kernels to the outputs of {eck l, eck r} (k ∈
{1, 2, 3}), respectively. We insert skip-connection between the
encoder and the decoder and obtain the input of the next layer
by concatenating {ecfeatk l, ecfeatk r} (k ∈ {1, 2, 3}) with
upk (k ∈ {1, 2, 3}).

2) View decomposition network: Unlike the view synthesis
network G, the view decomposition network V is a fully
convolutional network with the structure shown in Table II.

It is noteworthy that, we obtain {dec5 l, dec5 r} by ap-
plying two 1 × 1 kernels to the output of dec5 in the
encoder V E . Then, the two decoders individually process
{dec5 l, dec5 r} to acquire their decomposed views. Leaky
ReLU, residual blocks, and skip-connections are introduced in
this network, similar to the view synthesis network, to ensure
the effectiveness of our model.

3) Discriminator network: We show the detailed structure
of the discriminator network D in Table III. Each convolu-
tional layer is followed by a leaky ReLU. The fully connected
layer on top of the convolutional layers is used to estimate the
probability that the middle view Is or Igt is real.

IV. EXPERIMENTS

To demonstrate the effectiveness and robustness of the pro-
posed method, we compare SCGN with several state-of-the-art
methods in both indoor and outdoor scene synthesis settings.
Specifically, we conduct multi-view synthesis experiments on
Multi-PIE [16] and KITTI [38] datasets for the indoor and
outdoor scene synthesis tasks, respectively.

We also apply our method in real conferencing systems2.
We collect frames (roughly 5K triplets) containing multiple
human subjects with their upper bodies in a conferencing
scenario. We use 80% for fine-tuning and 20% for testing. The
data for fine-tuning and testing share the same backgrounds.
The same subject with different clothing or motions may

2The demos and the implementation of the proposed SCGN are available
at https://github.com/zhuomanliu/SCGN.

TABLE I
DETAILED STRUCTURE OF THE VIEW SYNTHESIS NETWORK. THE LAYER
TYPES “CONV”, “MAXPOOL”, “DCONV”, AND “UPSAMPLE” REPRESENT

“CONVOLUTION”, “MAX-POOLING”, “DILATED CONVOLUTION” AND
“UPSAMPLING” RESPECTIVELY. k DENOTES THE KERNEL SIZE, s IS THE

STRIDE OF THE LAYER AND r DENOTES THE DILATION RATE OF DILATED
CONVOLUTION. THE DEFAULT INPUT OF EACH LAYER IS THE OUTPUT OF

THE PREVIOUS LAYER, EXCEPT FOR THOSE LAYERS SPECIFIED BY THE
COLUMN “INPUT”.

Shared Encoder
Layer Type k s r Output Size
ec1 conv 7 1 - 224×224×32
ep1 maxpool 3 2 - 112×112×32
ec2 conv 5 1 - 112×112×64
ep2 maxpool 3 2 - 56×56×64
ec3 conv 3 1 - 56×56×128
ec4 dconv 3 1 2 56×56×128
ec5 dconv 3 1 2 56×56×128
ec6 dconv 3 1 2 56×56×128

Decoder
Layer Type Input k s Output Size
dc1 conv ec6 l, ec6 r 3 1 56×56×128
up1 upsample dc1 - - 56×56×128
dc2 conv up1, ecfeat3 l, ecfeat3 r 3 1 56×56×64
up2 upsample dc2 - - 112×112×64
dc3 conv up2, ecfeat2 l, ecfeat2 r 5 1 112×112×32
up3 upsample dc3 - - 224×224×32
dc4 conv up3, ecfeat1 l, ecfeat1 r 7 1 224×224×32
dc5 conv dc4 3 1 224×224×3

TABLE II
DETAILED STRUCTURE OF THE VIEW DECOMPOSITION NETWORK.

“DECONV” REPRESENTS THE DECONVOLUTION LAYER.

Encoder Decoder
Layer Type k s Output Size Layer Type k s Output Size
dec1 conv 7 2 112×112×16 ddc1 deconv 3 2 28×28×128
dec2 conv 5 2 56×56×32 ddc2 deconv 3 2 56×56×64
dec3 conv 3 2 28×28×64 ddc3 deconv 5 2 112×112×32
dec4 conv 3 2 14×14×128 ddc4 deconv 7 2 224×224×16
dec5 conv 3 1 14×14×256 ddc5 deconv 3 1 224×224×3

TABLE III
DETAILED STRUCTURE OF THE DISCRIMINATOR NETWORK.

Layer Type k s Output Size
disc1 conv 5 2 112×112×32
disc2 conv 5 2 56×56×64
disc3 conv 5 2 28×28×128
disc4 conv 5 2 14×14×256
fc5 fc - - 1

appear in different frames. Thus, there is no overlap in image
level data. More details of the data collection are described in
Section IV-G1.

A. Implementation Details and Datasets

For convenience, we use the same experimental settings for
experiments on both Multi-PIE and KITTI datasets. Specifi-
cally, for the optimization, we use Adam [39] with β1 = 0.9
and β2 = 0.999 and normalize all images to the range (−1, 1)
to train the model while set λ1 = 0.01, λ2 = 0.001 and
λ3 = 0.01 to balance the losses in Eq.(12). We train the
proposed SCGN for 371, 400 iterations with a batch size
of 1. The learning rate is set to 1 × 10−4 and 1 × 10−5

for generator and discriminator, respectively, and decays by
0.1 at iteration 185, 700. During training, the original images
are center cropped to min(H,W ) × min(H,W ), where H
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Fig. 3. Performance comparison of different view synthesis methods on Multi-PIE measured by PSNR and MS-SSIM metrics. Both the training and testing
curves are reported in this figure.
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Fig. 4. Performance comparison of different view synthesis methods on KITTI measured by PSNR and MS-SSIM metrics. Both the training and testing
curves are reported in this figure.

and W indicate the height and width of the original image,
respectively. Then, we resize it to 224 × 224. We implement
our proposed method on TensorFlow [40] and conduct all
experiments on a single Nvidia TitanX GPU.
Multi-PIE. The indoor dataset Multi-PIE contains more than
750, 000 images of 337 people under 15 symmetrical view-
points. For all of the experiments on Multi-PIE in this paper,
we divide the dataset into 270 people for training and 67
people for testing, and make image triplets that include the
frontal view (i.e., the 0◦ pose captured by the central camera
3) and two symmetrical side views (from 6 different baselines
{bS = ±15◦, bM = ±30◦, bL = ±45◦, b60 = ±60◦, b75 =
±75◦, b90 = ±90◦}) for training and evaluation. Furthermore,
the cropped image triplets include not only the facial region
but also the complex background.
KITTI. The outdoor dataset KITTI provides 22 odometry
and image sequences of urban city scenes. Our experimental
settings on KITTI are the same to the standard setting of
view synthesis and have been widely used in view synthesis
methods [10], [21], [13], [41]. The KITTI [38] dataset contains
the frame sequences captured by the camera on a car traveling
through urban city scenes. When we select two frames from
a sequence, they can be seen as two views captured by the
cameras at different positions. Actually, it is consistent with
the standard setting of view synthesis that we seek to produce
a novel view from multiple views captured by the cameras at
different positions. To demonstrate the robustness and superi-
ority of SCGN under the scenes with complex backgrounds,
we conduct experiments on this dataset. According to the
settings of VSAF [10] on KITTI, we first randomly sample
a frame as ground truth and then select two symmetric frames

3http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie.

within the sequence that are separated by ±K frames as the
input image pair, where k is randomly sampled from the set
{1, 2, ..., 7}. We split the first 11 sequences into 9 for training
and 2 for testing and randomly collect paired frames with
different baselines.

B. Comparing Methods

On Multi-PIE and KITTI, we compare SCGN with sev-
eral state-of-the-art methods, including View Synthesis by
Appearance Flow (VSAF) [10] , Deep View Morphing
(DVM) [12], View Independent Generative Adversarial Net-
work (VI-GAN) [24], Multi-Scale Adversarial Correlation
Matching (MS-ACM) [15], and Extreme View Synthesis
(EVS) [42]. Since the source code of DVM, MS-ACM and
VI-GAN are not public, we reimplement DVM and MS-ACM
on TensorFlow [40] and VI-GAN on PyTorch [43].

We also consider the widely used image-content-based
method Encoder-Decoder (ED) [12] in the comparisons. ED
is inspired by the Encoder-Decoder Network (EDN) in DVM.
We employ the ED as a baseline to evaluate the content-based
method. To this end, we modify the outputs and architecture
of the decoders in the EDN to have the same input and output
settings as our method. We also extend the adversarial training
scheme to DVM [12] and obtain its GAN-based variant, called
adversarial DVM (ADVM).

Furthermore, to demonstrate the excellent performance of
our method, we further compare SCGN with some gener-
ative methods, e.g., Pix2Pix [33] and CycleGAN [17], and
geometry-based methods that leverage known camera poses
or plane-sweep volumes, e.g., Multi2Novel [13] and Stereo-
Magnification [4], on KITTI.
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Fig. 5. Visual comparisons of the synthesized view images under different baselines, where M represents Multi-PIE and {bS , bM , bL} are three different
baselines. For Multi-PIE, {View1, View2, GT} represent {left, right, middle} views.

C. Evaluation Metrics

For quantitative comparisons, we adopt the Peak Signal-to-
Noise Ratio (PSNR), Multi-Scale Structural Similarity (MS-
SSIM) [31], and Inception Score (IS) [44] as performance
metrics. The PSNR measures the amount of signal loss w.r.t. a
reference and the MS-SSIM measures the similarity between
the generated images and the reference images. The inception
score measures both the single image quality and the diversity
over a large number of samples. For all the above metrics, the
larger the metric value is, the better the performance of the
method is. We also adopt the mean of MSE (mMSE) (used
in DVM [12]) and L1 error (used in VSAF [10]) for fair
comparisons. For these two metrics, the smaller the metric
value is, the better the performance of the method is.

Furthermore, several view synthesis quality assessment
methods [45], [46], [47], [48] have been shown very effective
for view synthesis quality evaluation. Specifically, we compare
the performances of our SCGN model with the considered
methods in terms of LOGS [37], which is a view synthesis
quality metric. For the LOGS, the higher metric value indicates
better quality.

D. Training Convergence

In this experiment, we compare the training and testing con-
vergence of different methods on both Multi-PIE and KITTI
datasets in terms of PSNR and MS-SSIM. The experimental
results of the indoor and outdoor datasets are shown in Fig. 3
and Fig. 4, where (a), (b) and (c), (d) show the convergence
results in terms of PSNR and MS-SSIM, respectively, during
both training and testing periods.

GT

VSAF DVM ADVM

ED

Ours

VI-GAN MS-ACM

Ours (w/ sharp)

Fig. 6. Visual comparison of image details generated by different methods
on Multi-PIE. The red boxes and the green boxes emphasize the local details
of background and face, respectively.

From Fig. 3 and Fig. 4, our SCGN shows faster convergence
than other methods in terms of both PSNR and MS-SSIM.
As for the testing performance, our SCGN consistently out-
performs other methods during the whole training procedure.
These results demonstrate the superior performance of the
proposed method over competing approaches.

E. View Synthesis Results on Indoor Scenes

We compare our SCGN with state-of-the-arts on Multi-PIE
and report the results in Table IV. Noted that the results on
Multi-PIE for EVS are unavailable because of the lack of
camera pose in the Multi-PIE. From Table IV, we observe
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Fig. 7. Visual comparisons of the synthesized view images under different baselines, where M represents Multi-PIE and {b60, b75, b90} are three large
different baselines. For Multi-PIE, {View1, View2, GT} represent {left, right, middle} views.

that, first, SCGN consistently outperforms other methods on all
evaluation metrics under different baseline settings. Our model
obtains the highest PNSR and inception score, suggesting that
the synthesized results are more photo-realistic. Moreover,
high MS-SSIM values and high LOGS values with low error
values (e.g., mMSE, L1 error) show that SCGN generates
accurate results. Second, SCGN significantly outperforms the
considered methods, especially when the baseline is very large,
i.e., bM , bL, b60, b75, and b90. In other words, our method is
able to effectively predict the frontal view from two distant
side views. In contrast, geometry-based methods (e.g., VSAF,
DVM, ADVM, EVS) obtain poor metric values and fail to
synthesize high-quality frontal views under large baselines.
Furthermore, ED performs better than these geometry-based
methods, which shows that view synthesis under large base-
lines benefits from methods based on image content.

From the visual comparison results in Fig. 5, VSAF and
DVM struggle to produce plausible frontal views when in-
creasing the baseline from small to large. For the modified
version ADVM with an additional adversarial loss, the image
quality still suffers due to the limitations of 2D geometric
approximation. The Encoder-Decoder (ED) exhibits good per-
formance when given a small baseline but fails to produce
plausible images under a large baseline. In contrast, SCGN is
able to recover photo-realistic frontal views when given differ-
ent baselines. We also apply our method to the view synthesis
tasks on the Multi-PIE dataset with three large baselines, i.e.,
b60, b75, and b90. We show the results in Fig. 7 and Table V.
From these results, our SCGN significantly outperforms the
considered methods. From Fig. 15, our method effectively
preserves the consistency among different views.

TABLE IV
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART VIEW SYNTHESIS

METHODS UNDER THREE BASELINES bS , bM , bL ON MULTI-PIE.

Baseline bS

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 19.56 0.7199 - 134.50 0.171 0.1979
DVM [12] 21.26 0.8686 - 131.67 0.123 0.2581

ADVM 20.89 0.8587 1.68±0.12 131.76 0.125 0.2544
ED [12] 23.30 0.8940 - 130.63 0.083 0.2505

VI-GAN [24] 21.22 0.7910 1.72±0.19 131.87 0.101 0.2436
MS-ACM [15] 25.16 0.9096 1.62±0.38 129.23 0.064 0.2501
SCGN (ours) 26.36 0.9620 1.97±0.22 128.95 0.054 0.2719

Baseline bM

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 17.35 0.6273 - 136.39 0.191 0.1799
DVM [12] 18.39 0.6744 - 135.52 0.180 0.2069

ADVM 18.25 0.7010 1.67±0.16 135.37 0.185 0.1746
ED [12] 21.07 0.8270 - 132.54 0.103 0.2278

VI-GAN [24] 20.35 0.7565 1.72±0.17 132.82 0.111 0.2416
MS-ACM [15] 22.51 0.8464 1.66±0.41 130.71 0.086 0.2182
SCGN (ours) 22.83 0.8578 1.97±0.22 130.40 0.076 0.2459

Baseline bL

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 16.27 0.5257 - 139.01 0.215 0.1860
DVM [12] 16.77 0.6431 - 139.12 0.224 0.2144

ADVM 17.09 0.6436 1.67±0.22 138.94 0.223 0.2034
ED [12] 20.51 0.7741 - 133.30 0.112 0.2229

VI-GAN [24] 19.66 0.7277 1.77±0.27 133.92 0.121 0.2346
MS-ACM [15] 21.57 0.8174 1.66±0.39 131.50 0.096 0.2177
SCGN (ours) 21.75 0.8268 1.91±0.24 131.37 0.087 0.2407

To show the effectiveness of our method for synthesizing
photo-realistic frontal views, we exhibit the detailed structure
and texture of the results produced by different methods in
Fig. 6. Clearly, SCGN is able to produce quality images with
sharper face structures and finer details in the background.

F. View Synthesis Results on Outdoor Scenes

Quantitative comparisons using the evaluation metrics are
shown in Table VI and Table VII. From Table VI, SCGN
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Fig. 8. Visual comparisons of the synthesized view images on KITTI, where {View1, View2, GT} represent {last, next, current} frames.

TABLE V
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART VIEW SYNTHESIS

METHODS UNDER THREE BASELINES b60, b75, b90 ON MULTI-PIE.

Baseline b60

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 10.18 0.0599 - 172.78 0.405 0.2005
DVM [12] 18.47 0.6985 - 135.67 0.169 0.2220

ADVM 16.33 0.5990 1.66±0.22 140.58 0.245 0.1620
ED [12] 19.73 0.7362 - 134.50 0.126 0.2107

VI-GAN [24] 19.25 0.6973 1.71±0.23 134.41 0.130 0.1965
MS-ACM [15] 20.85 0.7780 1.52±0.20 132.29 0.104 0.1997
SCGN (ours) 20.84 0.7929 1.84±0.33 132.32 0.102 0.2443

Baseline b75

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 15.97 0.5563 - 139.38 0.201 0.1763
DVM [12] 15.48 0.4513 - 143.32 0.267 0.1817

ADVM 17.17 0.5876 1.78±0.21 138.50 0.182 0.2191
ED [12] 18.22 0.6602 - 137.32 0.152 0.2058

VI-GAN [24] 18.57 0.6666 1.80±0.30 135.62 0.140 0.1962
MS-ACM [15] 19.45 0.7331 1.60±0.24 134.09 0.122 0.2030
SCGN (ours) 19.41 0.7459 1.71±0.24 134.11 0.121 0.2317

Baseline b90

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 8.99 0.1165 - 187.32 0.549 0.2156
DVM [12] 14.61 0.4409 - 146.66 0.316 0.1994

ADVM 14.92 0.4825 2.36±0.36 145.47 0.297 0.2140
ED [12] 17.68 0.6528 - 138.43 0.160 0.2075

VI-GAN [24] 18.53 0.6782 1.88±0.38 136.13 0.142 0.1972
MS-ACM [15] 19.27 0.7282 1.65±0.27 134.85 0.127 0.1840
SCGN (ours) 19.29 0.7418 1.74±0.28 134.65 0.123 0.2258

outdistances the state-of-the-art view synthesis methods on
PSNR and MS-SSIM, although the inception score of ADVM
is slightly higher than that of our method. From Table VII, our
method consistently outperforms the other methods according
to several metrics, which verifies its effectiveness. It is worth
noting that the image-to-image translation task is different
from view synthesis because the latter has to synthesize a
novel view from two distinct views with more strict constraints
(e.g., generation of occluded contents), and it is hard to handle
the synthesis task under large baselines for the compared
geometry-based methods in Table VII which work well under
stereo settings or other small baselines.

We show the experimental results of visual comparison
in Fig. 8. For VSAF and the Encoder-Decoder (ED), the
synthesized frontal views contain many deformations and
blurs. For DVM and ADVM, artifacts still appear in some

TABLE VI
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART VIEW SYNTHESIS

METHODS UNDER DIFFERENT BASELINES ON KITTI.

Method PSNR MS-SSIM Inception Score mMSE L1 LOGS
VSAF [10] 13.87 0.4533 - 151.34 0.258 0.3417

VI-GAN [24] 15.05 0.5294 1.83± 0.06 146.31 0.233 0.1239
DVM [12] 15.48 0.6552 - 144.25 0.205 0.4051

ADVM 16.30 0.6861 2.96±0.29 141.37 0.179 0.3750
ED [12] 17.28 0.6859 - 139.28 0.159 0.3365

EVS [42] 14.74 0.5135 - 148.93 0.250 0.3776
MS-ACM [15] 19.35 0.7715 3.78±0.50 135.37 0.124 0.3817
SCGN (ours) 19.20 0.7772 2.41±0.25 129.48 0.031 0.4097

TABLE VII
COMPARISONS WITH ADDITIONAL STATE-OF-THE-ART METHODS ON

KITTI. ALL METHODS ARE TRAINED AND TESTED IN A PAIRED SETUP.

Method PSNR MS-SSIM L1

Pix2Pix [33] 12.59 0.6943 0.141
CycleGAN [17] 8.17 0.5112 0.226

Multi2Novel [13] 10.36 0.3904 0.413
StereoMagnification [4] 11.87 0.3792 0.194

SCGN (ours) 19.20 0.7772 0.031

regions even through the generated images look realistic on the
whole. In contrast, SCGN maintains robustness and performs
well in scenes with rich texture, complex background and
different light conditions. We also show image details such as
shadows on the road in Fig. 10, which further demonstrates
the superiority of our methods in terms of details.

G. Results on Real-world Conferencing System

1) Details about the conferencing dataset: For demo evalu-
ation, we set up the experimental environment by placing two
cameras on the left side and the right side, and capture view
pairs as our inputs. Furthermore, to capture the frontal view as
the ground-truth, we place an additional camera at the center
of the screen on the same horizontal line as the other cameras.

2) Implementation details: We train the SCGN model on
our conferencing dataset with a pre-trained model which
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Fig. 9. Visual results of our demo in a real-world video conferencing system with a pre-defined baseline between the left and right cameras.
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MS-ACMEVS

Ours (w/ sharp)

Fig. 10. Visual comparisons of image details generated by different methods
on KITTI. The red boxes and the green boxes emphasize the local details of
tree texture and shadow on the road, respectively.

TABLE VIII
ABLATION STUDY OF EACH MODEL COMPONENT ON KITTI. WE

COMPARE THE RESULTS IN TERMS OF PSNR, MS-SSIM, AND INCEPTION
SCORE WHERE m REPRESENTS THE MODIFIED VERSION.

VSN VDN adv PSNR MS-SSIM Inception Score
X 18.96 0.7382 -
m 18.92 0.7351 -
X X 18.80 0.7533 2.45±0.22
X m X 18.81 0.7432 2.38±0.20
X X 19.16 0.7511 -
X X X 19.20 0.7773 2.41±0.25

TABLE IX
ABLATION RESULTS (PSNR) OF VDN ON MULTI-PIE.

VSN VDN adv bS bM bL

X X 25.52 22.59 21.54
X m X 25.59 22.69 21.68
X X X 26.36 22.83 21.75

is trained on Multi-PIE. Note that the pre-trained data are
with similar settings of our conferencing dataset, i.e., peo-
ple with a background in symmetrical image pairs. We
also record two conferencing demos to further demonstrate
the effectiveness and robustness of our SCGN. One of
the demos shows the real conferencing system with less
actions (named as SCGN demo talk.mp4), and the other
shows a scene with much more rapid movements (named as
SCGN demo move.mp4).

3) View synthesis results on our demos: As shown in Fig. 9,
for most scenes, our SCGN performs effectively and synthe-
sizes views as photo-realistic as the captured frontal view. The
good-quality visual results of the demos that even including
two people with occlusions demonstrate the robustness of our
SCGN. From the talking demo with fewer actions, we observe
that the synthesized views are excellent with the small changes
of inputs, and more details and visualized results of the moving
demo are shown in the supplementary.

V. FURTHER EXPERIMENTS

We conduct further experiments on KITTI and Multi-PIE
to demonstrate the effectiveness of each component of SCGN,
including the View Synthesis Network (VSN), the View De-
composition Network (VDN), the adversarial loss, and the
sharpness loss.

A. Effect of View Synthesis Network

We investigate the effect of VSN by comparing the original
version of VSN (w/o VDN & adv) and the modified version of
VSN (mVSN). Compared to VSN, mVSN removes the max-
pooling layers of the encoder and the upsampling layers of the
decoder. In addition, we train these two versions of VSN using
only the Lp loss in Eq. (12). As shown in Table VIII, all of
the evaluation metrics show that the original version of VSN
outperforms the mVSN, which demonstrates the necessity of
the feature compression and extraction mechanism in VSN.

B. Effect of View Decomposition Network

We investigate the effect of VDN by removing the VDN
component (w/o VDN) and removing the Lvc in Eq. (12).
Furthermore, we modify the separated decoders {V D,l, V D,r}
to be a single weight-shared decoder (mVDN) to evaluate the
effect of the separated decoders in VDN.

As shown in Table VIII, our model with VDN (SCGN)
significantly outperforms the model without VDN on KITTI
in terms of both PSNR and MS-SSIM although the inception
score of our model is slightly lower than that without VDN.
Our model with VDN (SCGN) also has higher PSNR than that
without VDN on different baselines of Multi-PIE as shown in
Table IX. Our model (SCGN) also outperforms the mVDN in
terms of all evaluation metrics. These results demonstrate that
using the two separate decoders to obtain the decomposed side
views is more effective than using a single decoder in VDN.
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Fig. 11. Visual comparisons of our SCGN and a variant with the sharpness loss Lsharp (w/ sharp) under different baselines, where M represents Multi-PIE
and {bL, b60, b75, b90} are four different baselines in Multi-PIE..

GT without 𝐿𝑎𝑑𝑣 with 𝐿𝑎𝑑𝑣

Fig. 12. Performance comparisons of SCGN with and without the adversarial
loss Ladv on KITTI dataset.

We also show the images regenerated by VDN in Fig. 15.
From this figure, VDN is able to decompose the synthesized
view into the original side views and recover the content
details on both Multi-PIE and KITTI. Moreover, from Fig. 13,
compared to the synthesized results from a variant of SCGN
without VDN, the windows and wheels synthesized by SCGN
with VDN are more realistic than those of the ground-truth
(GT) with less deformation. All of the above comparisons
show that VDN can help resolve the correspondence matching
issue and compensate for the lack of rectification, so that VSN
does not need to perform any geometric processing in advance,
and can directly learn the photo-realistic synthesized views
based on image content.

Frontal view (GT)

GT

w/o VDN

w/ VDN

Frontal view (GT)

GT

w/o VDN

w/ VDN

Fig. 13. Performance comparisons of SCGN with (w/) and without (w/o)
View Decomposition Network (VDN). The red boxes emphasize the local
details of windows and wheels, respectively.

TABLE X
ABLATION STUDY OF SHARPNESS LOSS Lsharp ON LARGE BASELINES bL ,
b60 , b75 , b90 IN MULTI-PIE. bL , b60 , b75 , b90 INDICATE BASELINE ±45◦ ,

±60◦ , ±75◦ , ±90◦ RESPECTIVELY.

Baseline bL

Lsharp PSNR MS-SSIM Inception Score mMSE L1 LOGS
7 21.75 0.8268 1.91±0.24 137.37 0.087 0.2329
X 22.03 0.8349 1.83±0.30 131.10 0.087 0.2391

Baseline b60

Lsharp PSNR MS-SSIM Inception Score mMSE L1 LOGS
7 20.84 0.7929 1.84±0.33 132.32 0.102 0.2443
X 20.93 0.7969 1.78±0.32 132.23 0.101 0.2383

Baseline b75

Lsharp PSNR MS-SSIM Inception Score mMSE L1 LOGS
7 19.41 0.7459 1.71±0.24 134.11 0.121 0.2317
X 19.55 0.7473 1.75±0.31 133.90 0.117 0.2374

Baseline b90

Lsharp PSNR MS-SSIM Inception Score mMSE L1 LOGS
7 19.29 0.7418 1.74±0.28 134.65 0.123 0.2258
X 19.42 0.7458 1.68±0.25 134.42 0.120 0.2342

C. Effect of the Adversarial Loss Ladv

We investigate the effect of adversarial learning by removing
Ladv (i.e., Eq. (8)) from the training procedure. As shown
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Fig. 14. Visual comparisons of the synthesized view under asymmetric input views, where (·, ·) represents input baseline of View1 and View2.

View1recon View2reconView1 View2

M_𝑏𝐿

M_𝑏60

M_𝑏75

M_𝑏90

KITTI

Fig. 15. Regenerated results of VDN on Multi-PIE with large baselines, i.e.,
bL (±45◦), b60 (±60◦), b75 (±75◦), and b90 (±90◦) and on KITTI.

in Table VIII, the PSNR, MS-SSIM, and inception score of
SCGN without adversarial loss is slightly higher than that
with adversarial loss. The adversarial loss introduces diversity
to improve the photo-realism, leading to lower evaluation
metrics. From visual qualitative comparisons in Fig. 12, it can
be seen that SCGN synthesizes rich details such as a clear lane
line, tree texture, and shadow on the road, while the SCGN
without the adversarial loss synthesizes smooth results.

D. Effect of the Sharpness Loss Lsharp
To investigate the effect of Lsharp in Eq. 4, we consider

4 view synthesis settings on large baselines, i.e., bL (±45◦),

TABLE XI
COMPARISON OF THE AVERAGE INFERENCE LATENCY AND THE
PERFORMANCE OF DIFFERENT METHODS ON KITTI DATASET.

Method VSAF [10] DVM [12] ADVM ED [12] SCGN
Inference Latency (s) 0.037 0.052 0.064 0.068 0.036

PSNR 13.87 15.48 16.30 17.28 19.20

TABLE XII
ABLATION STUDY OF ASYMMETRIC BASELINE IN MULTI-PIE, WHERE

ASYM. REPRESENTS TRAINING SCGN WITH ASYMMETRIC INPUTS VIEWS.

Asym. PSNR MS-SSIM Inception Score mMSE L1

7 21.75 0.8212 1.86±0.26 131.99 0.094
X 21.77 0.8179 2.14±0.06 131.48 0.095

b60 (±60◦), b75 (±75◦), and b90 (±90◦). We show the results
in Table X and Fig. 11. From the results, the model with the
sharpness term outperforms the baseline model in most cases.

E. Discussion on Asymmetric Input Views

We apply our method to the view synthesis tasks with
asymmetric input views on the Multi-PIE dataset. In the
experiments, we randomly sample angles from the range
between 15◦ to 90◦ to construct the asymmetric views. From
the results in Table XII and Fig. 14, our SCGN is able to
produce photo-realistic views from asymmetric input views.

F. Effect of λ1, λ2, and λ3 on the Performance of SCGN

In this section, we investigate the effect of λ1, λ2, and λ3
in Eq. (12) on Multi-PIE and KITTI. Table XIII shows the
experimental results with different λ1 values when λ2 = 0.001
and λ3 = 0.01. The results for λ1 = 0.01 are better than the
others in terms of PSNR, MS-SSIM, and Inception Score (IS)
on both datasets. We also evaluate our method with different
λ2 values when λ1 = 0.01 and λ3 = 0.01. Table XIV shows
that SCGN with λ2 = 0.001 achieves the best performance



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 26, JANUARY 2021 13

TABLE XIII
EFFECT OF λ1 ON THE PERFORMANCE OF SCGN.

λ1
Multi-PIE KITTI

PSNR MS-SSIM IS PSNR MS-SSIM IS
0.1 23.73 0.8722 2.34±0.30 18.03 0.6957 2.50±0.30

0.01 23.95 0.8774 2.19±0.24 19.20 0.7773 2.41±0.25
0.001 23.08 0.8511 2.06±0.27 18.80 0.7433 2.53±0.23

TABLE XIV
EFFECT OF λ2 ON THE PERFORMANCE OF SCGN.

λ2
Multi-PIE KITTI

PSNR MS-SSIM IS PSNR MS-SSIM IS
0.01 23.65 0.8655 2.24±0.30 18.53 0.7338 2.32±0.18

0.001 23.95 0.8774 2.19±0.24 19.20 0.7773 2.41±0.25
0.0001 23.06 0.98498 1.99±0.22 18.49 0.7262 2.28±0.21

TABLE XV
EFFECT OF λ3 ON THE PERFORMANCE OF SCGN.

λ3
Multi-PIE KITTI

PSNR MS-SSIM IS PSNR MS-SSIM IS
0.1 19.71 0.7924 1.80±0.22 17.02 0.6840 2.52±0.32

0.01 23.95 0.8774 2.19±0.24 19.86 0.7706 3.56±0.41
0.001 23.08 0.8511 2.06±0.27 19.73 0.7605 3.53±0.53

on three metrics. In addition, we investigate our method with
different values of λ3 when λ1 = 0.01 and λ2 = 0.001. From
Table XV, our method performs the best when λ3 = 0.01 in
terms of three metrics. As a result, we suggest setting λ1 =
0.01, λ2 = 0.001, and λ3 = 0.01 for SCGN by default.

G. Comparison of the Inference Latency of Different Methods

In this section, we show the average inference latency of
different methods on the KITTI dataset using a single Nvidia
TitanX GPU. We show the comparison results of latency and
performance in Table XI. From these results, our method
exhibits the fastest inference speed (27 fps) but yields the best
performance above all the other compared methods.

VI. CONCLUSION

We have presented a simple but effective view synthesis
network to synthesize unseen frontal and middle views from
two side views with a large camera baseline without geometric
processing. Specifically, we propose a view decomposition
network by learning an inverse mapping from the synthesized
view back to the input view pair to preserve content con-
sistency; this mapping can take the place of rectification and
solve the pixel-level matching problem. To improve the photo-
realism of images, we further introduce an adversarial loss
to increase the likelihood that the synthesized images will be
indistinguishable from the real views. As a result, the proposed
method can simultaneously produce photo-realistic unseen
views and preserve the view consistency among all views of
the same scene. Using different baselines, the proposed method
consistently outperforms the other methods in terms of both
quantitative and visual comparisons.
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Supplementary Materials: Deep View Synthesis
via Self-Consistent Generative Network

We organize our supplementary materials as follows. We first display more visual results on both Multi-PIE and KITTI
datasets in Sec. I. Then, we provide details of our demo in Sec. II, including experimental setup and visual results on various
scenes that people have large movement.

I. MORE VISUAL RESULTS ON MULTI-PIE AND KITTI

We show more results on the visual comparisons between our method and other state-of-the-art methods on Multi-PIE and
KITTI in Fig. 1, Fig. 2 and Fig. 3, respectively. From Fig. 1 and Fig. 2, we observe that our method is able to synthesize
detailed and photo-realistic views in both facial and background areas. As shown in Fig. 3, our method can synthesize great
details of outdoor scenes despite the complex contents on KITTI.

Left Right Middle (GT) VSAF DVM ADVM ED

𝑏S

VI-GAN

𝑏𝐿

𝑏𝑀

OursMS-ACM

Fig. 1: Visual comparisons of the synthesized middle view images under different baselines on Multi-PIE and {bS , bM , bL}
are three different baselines.
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Left Right Middle (GT) VSAF DVM ADVM ED

𝑏60

VI-GAN

𝑏90

𝑏75
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Fig. 2: Visual comparisons of the synthesized middle view images under different baselines on Multi-PIE and {b60, b75, b90}
are three different baselines.
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Succ. GTPred. VI-GAN EVSDVMVSAF ADVM ED MS-ACM Ours

Fig. 3: Visual comparisons of the synthesized middle view images under different frame intervals on KITTI.
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II. DETAILS OF OUR DEMO

We introduce the equipment that collects our conferencing dataset and demos in Fig. 4. Three cameras (i.e., two side
cameras for capturing input views and the center camera for capturing the ground-truth) in the equipment are placed on the
same horizontal line. The distance between the symmetrically placed left and right cameras is 124.2 cm, and the baseline of
the paired view captured by the two side cameras is bM (±30◦). All the experimental results of our proposed method on the
conferencing system are evaluated on this setup.

124.2 cm

object

Fig. 4: The setup of our conferencing system.

For SCGN demo move.mp4, besides the good results of most scenes, we further analyze different scenes that contain much
more rapid movements, and we select several frames to display in Fig. 5.

• Approach: When we approach the screen, the general synthesized views are good but distortions occur in the face area
due to the non-center face position in the input view pair.

• Raise hands: Due to the lack of training data with hands, our trained model is not suitable for synthesizing accurate hand
areas and faces with large pose.

• Large pose: When people in front of the screen make large pose, the synthesized views may lose some details.
• Motion blur: Under the situation of rapid motions which results in blurry input pairs, it is hard for our model to handle.

Approach

Large Pose

Motion Blur

Raise Hands

Fig. 5: Details of the demo with rapid movements.


